
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015 57

OnionMap: A Scalable Geometric Addressing and
Routing Scheme for 3D Sensor Networks

Kechao Cai, Zhimeng Yin, Hongbo Jiang, Member, IEEE, Guang Tan, Member, IEEE, Peng Guo, Member, IEEE,
Chonggang Wang, Senior Member, IEEE, and Bo Li, Fellow, IEEE

Abstract—Geometric routing or geo-routing has been shown
as a promising approach to scalable routing in sensor networks.
Despite its success in 2-D networks, very few designs are available
for 3-D networks that can ensure short routes using only small
per-node state, without incurring high load imbalance on the
nodes. In this paper, we propose a novel addressing and routing
scheme, i.e., OnionMap, for 3-D sensor networks that achieve the
above goals, using solely connectivity information and at a linear
message cost. The key idea is to decompose a 3-D network into a set
of connected layers, which are then mapped to a set of concentric
sphere structures (similar to an onion). On each sphere, a discrete
Ricci flow method is used to assign each node a set of coordinates
that permits purely greedy routing within that sphere; across the
different spheres, a layer alignment algorithm helps rotate and
scale the spheres, to form a coherent global coordinate system
that guides global routing. Theoretical analysis and simulation
show OnionMap’s advantages over state-of-the-art solutions in
path stretch, per-node storage, and load balance.

Index Terms—Geometric routing, 3-D sensor networks.

I. INTRODUCTION

FOLLOWING their success in 2-D environments, sensor
networks have drawn growing interest among the research

community for the 3-D emerging applications in building

Manuscript received January 9, 2014; revised April 16, 2014; accepted
June 3, 2014. Date of publication June 9, 2014; date of current version
January 7, 2015. The work of G. Tan was supported in part by the National
Natural Science Foundation of China (NSFC) under Grants 61103243 and
61379135, and by Shenzhen Overseas High-level Talents Innovation and En-
trepreneurship Funds under KQC201109050097A. The work of H. Jiang was
supported in part by the NSFC under grants 61073147 and 61173120, and
by the Program for New Century Excellent Talents in University under Grant
NCET-10-408 (State Education Ministry). The associate editor coordinating the
review of this paper and approving it for publication was L. Lai.

K. Cai and Z. Yin are with the Department of Electronics and Information
Engineering and Wuhan National Laboratory for Optoelectronics, Huazhong
University of Science and Technology, Wuhan 430074, China, and also with
the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sci-
ences, Shenzhen 518055, China (e-mail: caikechao@gmail.com; yinzhimeng@
gmail.com).

H. Jiang and P. Guo are with the Department of Electronics and Information
Engineering and Wuhan National Laboratory for Optoelectronics, Huazhong
University of Science and Technology, Wuhan 430074, China (e-mail:
hongbojiang2004@gmail.com; guopeng@mail.hust.edu.cn).

G. Tan is with Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China (e-mail: guang.tan@siat.
ac.cn).

C. Wang is with InterDigital Communications, Melville, NY 11747 USA
(e-mail: cgwang@ieee.org).

B. Li is with the Department of Computer Science and Engineering, The
Hong Kong University of Science and Technology, Kowloon, Hong Kong, and
also with Shanghai Jiao Tong University, Shanghai 200030, China (e-mail:
bli@cse.ust.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2014.2329677

surveillance, underwater survey, atmospheric monitoring, and
so on. As a primitive service for sensor networks, point to point
routing remains a critical enabling technology for such applica-
tions. Unfortunately, due to the vastly increased complexity of
network topology, the shift from 2-D to 3-D brings significant
challenges to scalable routing [1], [3] that very few adequate
designs if any are available for 3-D cases.

In this paper, we concentrate on greedy routing in 3-D sensor
networks. Greedy routing is attractive for its simplicity and
scalability, as a node only needs to store the coordinates of
its neighbors, and makes routing decisions solely based on the
coordinates. Although greedy routing has been a well-studied
object in 2-D sensor networks, it encounters great difficulties in
3-D network settings. A central problem that any greedy routing
algorithm faces is the problem of local minimum, where a node
cannot find a neighbor that is closer to the destination. In 2-D
sensor networks, face routing is a typical way to recover from a
local minimum. However, such a strategy requires a planarized
network graph, which has no corresponding version in 3-D
networks. Therefore, new ideas are required to make 3-D
geometric routing possible and efficient.

We propose a new scalable geometric addressing and routing
scheme, named OnionMap, for 3-D sensor networks. OnionMap
offers a number of desirable properties: (1) Location free: The
algorithm is purely connectivity based and does not need any
physical location information; (2) Boundary detection free: The
algorithm does not need boundary information, thus avoids a
large amount of message exchange and performance uncer-
tainty; (3) Low stretch: The generated routing paths have close
to optimal lengths; (4) Load balance: The routing traffic is
evenly spread over all the network nodes, which helps prolong
the network lifetime; and (5) High scalability: The total mes-
sage cost is linear with network size, and the per-node storage
cost is very low and does not change with network size.

The main idea of OnionMap is to organize the network nodes
into an onion-like structure (see Fig. 1) consisting of a set of
concentric sphere layers. Within each layer, nodes can route
greedily with 100% success rate, while the different layers are
further organized to allow global routing. At a first glance,
this approach is similar to the traditional decomposition based
routing schemes [2], [8], [15], [18], in which the network is
divided into pieces and routing is performed in an intra- and
inter-piece manner. However, the particular problem we are
facing contains two new challenges that are not found in previ-
ous work: (1) Layer decomposition. Layers should be connected
and closed surfaces so that their mapping to spheres is possible.
The simplest form of such surfaces is concentric spheres, with

1536-1276 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

58 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

Fig. 1. Example layers of a 3-D network, and the mapped onion-like structure
(i.e., concentric spheres). (a) Example layers. (b) Onion-like structure.

radius defined by hops; however a general network cannot be
naturally divided into spheres due to shape irregularity. There-
fore, we need a new form of layers with similar properties,
and find a way to extract them. (2) Layer embedding. Given a
likely irregular layer of nodes, how to assign each node a set of
coordinates that ensure successful greedy routing is a challenge.
Moreover, to achieve truly 3-D geometric routing, instead of
an ad hoc combination of reduced 2-D versions, the different
coordinate systems of the multiple layers should be properly
aligned, so that a (nearly) consistent global coordinate system
can be provided for the geo-routing algorithm.

To address the first challenge, we propose an incremental
layer construction method to extract layers that have provable
connectedness. The layers also form simple closed surfaces
that make geometric processing at later stage possible. For the
second problem, we use a discrete Ricci flow method [22],
followed by a uniformized stereographic projection, to assign
each node within a layer a set of coordinates. After these
procedures, each layer is mapped to a unit sphere, on which
purely greedy routing between all node pairs is allowed. As an
optimization, these unit spheres are scaled and aligned to form
a global coordinate system. This final coordinate system makes
it possible to route through the whole 3-D volume of network
efficiently.

We compare OnionMap against a number of previous so-
lutions, in particular the Bubble Routing scheme (Bubble for
short) [20], which represents the state-of-the-art geo-routing
solution for general 3-D networks. OnionMap improves over
Bubble with significantly lower path stretch (with a reduction
up to 41%), without Bubble’s reliance on the knowledge of net-
work boundaries, whose detection is highly nontrivial and often
expensive [6], [12], [25]. Furthermore, these improvements are
achieved at only linear message cost, which is asymptotically
optimal.

II. RELATED WORK

It is shown by Durocher et al. [1] that there does not
exist a deterministic localized routing algorithm in 3-D sensor
network. To avoid this obstacle, the Greedy-Random-Greedy
(GRG) algorithm [3] uses random walk, which is inefficient
in escaping local minima due to its blindness to topology.
Liu et al. [13] propose a position-based algorithm, GHG,
which partitions a network into convex hulls with partial unit
Delaunay triangulations. The convex hulls restrict the recovery

process in a subspace, thus improve the routing performance.
Lam et al. [11] present a MDT protocol suite that builds a
multidimensional tree structure to guarantee packet delivery in
a 3-D space. To support greedy forwarding, MDT constructs
virtual links to mask the connectivity irregularity in the physical
network. A potential problem of MDT is that the virtual links
may be very long, thus imposes high state on the nodes. MDT
has been used by an algorithm GDV [16] which shows good
performance in certain network scenarios. GDSTR-3-D [27] is
another 3-D routing algorithm that constructs convex hull trees
to route packets around voids. GDSTR-3-D relies on nodes’
physical location information. Zhou et al. [26] propose a vir-
tual coordinate assignment algorithm PSVC for 3-D networks.
PSVC uses greedy forwarding but does not guarantee delivery.

In an alternative approach, graph embedding techniques are
used to assign virtual coordinates to 3-D network nodes for
geometric routing. In [17] and [24], a 2-D triangulated do-
main with holes is mapped to a Euclidean circular disk or a
hyperbolic space. The embedding algorithms, however, do not
extend to 3-D cases. Yu et al. [23] consider a scalable routing
algorithm for 3-D high genus networks. This algorithm embeds
the network connectivity graphs into a possibly non-zero genus
surface. However, the embedding method is iterative and needs
expensive message exchanges.

In [21], a deterministic greedy routing algorithm is proposed
to embed a 3-D sensor network to a solid ball by using fine
tetrahedron mesh structures. This algorithm restricts the shape
of the 3-D network to a topological ball, with at most a
single hole. The Bubble Routing [20] algorithm (Bubble for
short) improves on [21] by allowing the topology to contain
multiple holes. The basic idea of Bubble is to decompose
the network into a set of Hollow Spherical Cells (HSCs). By
mapping the boundaries of HSCs (i.e., the Hollow Spherical
Bubbles (HSBs)) to spheres and constructing virtual trees inside
each HSC, packets can be greedily routed inside each HSC.
Bubble presents an elegant addressing solution for the network.
However, its routing algorithm may create suboptimal routes in
some cases. If the source and destination are in different HSCs,
the packet will first route toward a beacon node on the shared
boundary of the adjacent HSBs. When the packet reaches a
boundary node, it will be routed along the boundary of the HSC
that contains the destination node, potentially creating a detour.
Fig. 2 shows an example of Bubble path and OnionMap path.
The source node S and destination node T are in different HSCs
enclosed by HSBs. The packet will first move toward a beacon
node shown by the solid red point on the shared boundary of
the adjacent HSBs. Afterwards, the packet will travel along the
boundary of the HSC that contains the destination node, before
it moves toward T . This indirect movement clearly creates a
suboptimal path, as shown by the dotted red line.

Unlike Bubble, OnionMap names all the nodes in a global
coordinate system, thus avoids the boundary effect suffered by
Bubble. This leads to OnionMap’s better performance in path
stretch. Another advantage of OnionMap over Bubble is that it
does not rely on the knowledge of fine-grained network bound-
aries; instead it produces network boundaries as a byproduct.
Previous work has shown that boundary detection is nontrivial
and expensive [6], [12], [25]. For example, the algorithms in

CAI et al.: ONIONMAP 59

Fig. 2. Comparison between Bubble and OnionMap in a 3-D topology with
two holes (cross section view). The solid blue and dotted red lines represent
the routing paths between S and T by OnionMap and Bubble, respectively.
The long dashed black line is the HSB (Hollow Spherical Bubble) in Bubble
Routing. The region enclosed by HSB is HSC (Hollow Spherical Cell). The
solid red point is the beacon node in Bubble.

[6], [25] both involve complicated probing procedures to infer
the boundary information; the UNFOLD algorithm [12] makes
an important advance toward dynamic boundary detection, but
requires nodes’ location or range information.

III. LAYER DECOMPOSITION

In this section, we describe how OnionMap decomposes
the network into a set of thin layers. The layers are centered
at a center node, which acts as a coordinator for the layer
decomposition process.

The center node can be a randomly selected node from
the network. It is preferable to make the center close to the
network’s physical center, therefore we can select a center from
a number of candidates as follows. In the beginning, a randomly
chosen starting node floods the network, and selects a small
constant number (e.g., 5) of candidate centers on its broadcast
tree. Then, each of these nodes floods the network, and obtains
its broadcast tree’s inner depth, defined as the minimum depth
of a leaf node on the tree. Finally, the starting node selects the
candidate with the maximum inner depth as the final center
node. The broadcast tree of the chosen center node serves as
a helper structure to be used later.

A. Incremental Layer Construction

The layers are defined and constructed in an inductive way.
Let N be the set of nodes in the network graph G. N is divided
into a set of layers Lk, so we have N = ∪kLk. Ideally, a layer
should form a sphere, with radius defined by its hop distance to
the center. Unfortunately, in a general network, the set of nodes
at a certain hop distance to the center, called a Hop Set, are
normally neither connected nor closed. Thus we need to find
additional nodes, which constitute a Patching Set, to help such
a hop set to get connected and closed.

Definition 1. (Hop Set and Fragment): The kth Hop Set,
denoted Hk, is the set of nodes that are k hops away from
the center node on the center node’s broadcast tree. The ith
Fragment of Hk, denoted F i

k, is a connected component of Hk.
Thus Hk = ∪iF

i
k.

For example, F i
k and F j

k shown in Fig. 3 are the ith fragment
and jth fragment in the kth hop set.

Fig. 3. Two example layers and related node sets.

The basic idea of constructing Lk on the basis of the es-
tablished Lk−1 is to replace some pieces on Lk−1 with the
newly found fragments in Hk. Thus we need to define such
to-be-replaced pieces. Note that the Hop Sets in different layers
are virtually separated even though they could be overlapping
physically. Thus such overlap has no impact on the layer
construction.

Definition 2. (Covered Set and Uncovered Set): The ith
Covered Set of F i

k, denoted Ci
k−1, is the set of nodes in Lk−1

that have links to the nodes in F i
k. The ith Uncovered Set of

Lk−1, denoted Ck−1, is the set of all nodes in the (k − 1)th
layer except those in the covered sets, that is, Ck−1 = Lk−1 −
∪iC

i
k−1.

In Fig. 3, the nodes represented by blue dots form the ith
covered set Ci

k−1, and the nodes represented by green dots form
the jth covered set Cj

k−1.
Definition 3. (Covered Boundary Set and Covered Inner Set):

The Covered Boundary Set of Ci
k−1, denoted CBi

k−1, is the
set of nodes in Ci

k−1 that have links to nodes in Ck−1. The
Covered Inner Set is the remaining nodes in Ci

k−1, that is,
CIik−1 = Ci

k−1 − CBi
k−1.

For example, in Fig. 3, the nodes represented by green dots
bounded by black circles in the light gray area form the covered
boundary set CBj

k−1; the nodes represented by green dots in the

dark gray area form the covered inner set CIjk−1.
Definition 4. (Patching Set): The kth Patching Set, denoted

Pk, is the set of nodes in Lk−1 except those in CIik−1, that is,
Pk = Lk−1 − ∪iCIik−1.

The layer construction begins with a CORE which contains
the 1, 2, and 3 hop neighbors of the center node. Compared
with the network size, the CORE is relatively small. The
CORE is designated as layer 0, which can be seen as a virtual
closed shell. Then, assuming that the (k − 1)th layer is already
constructed, we start constructing the kth layer, under the
instructions from the center node. The process consists of three
steps:

1) Identifying Fragments in Lk: The center node floods a
message within its k hops, asking the nodes in the k hop set
Hk to perform asynchronous floodings within Hk. The flooded
message from a node p in Hk contains the ID of p. If a node
receives a flooded message before it starts its own flooding,
then it cancels its flooding action. A node always forwards a
flooded message, unless it has forwarded a previous message
containing a larger ID than the current one. In this way, every

60 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

connected component, i.e., fragment of Hk, will be able to elect
a leader—the flooding node with the largest ID. Every node is
then assigned a fragment ID equal to the leader’s ID.

2) Identifying Covered Inner Nodes in Lk−1: Every frag-
ment leader floods a message within its fragment, asking all
its members to determine their covered nodes in Lk−1. Each
of those covered node then checks if it is a neighbor of an
uncovered node in Lk−1; if not then it marks itself as a covered
inner node.

3) Creating Lk: All the fragment leaders of Lk asyn-
chronously flood a message containing the value k throughout
the kth layer fragments and the (k − 1)th layer, assigning a
layer ID k to all the nodes except the covered inner nodes
identified in the last step.

Up to now, all nodes that have been assigned a layer ID k
become the desired Lk.

B. Connectedness

The following theorem states that all layers are connected.
Theorem 1: Assume Lk−1 is connected, then the union set

Lk = Hk ∪ Pk forms a connected graph.
Proof: Lk is essentially the union of the kth hop set

and Lk−1, with the covered inner sets on the (k − 1)th layer
removed. Since Lk−1 is connected, to see whether Lk is
connected we only need to check whether the removal of the
covered inner sets will disconnect a pair of nodes. Consider a
path between two nodes s and t that passes through the covered
inner set (the dark gray area containing blue dots) in Fig. 3.
The removal of this dark gray area will cause the path segment
(indicated by the red dashed line) between two nodes in the
covered boundary set to be dropped. However, since these two
nodes are connected to F i

k and F i
k is connected, they can find a

path within F i
k (see the purple line). Thus the connectivity of the

original end nodes remains in Lk. Applying the above argument
to any pair of nodes in Lk will show that no two nodes in Lk

are disconnected, thus proving the theorem. �

C. Closedness

Though its connectedness is guaranteed, a layer generated
by our construction method does not necessarily form a simple
closed surface. For example, in Fig. 4(a), where a normal Lk−1

is shown as a red closed surface indicated by a red dotted line in
Fig. 4(b). When Lk is generated, it contains Hk and Pk. While
Pk comes from Lk−1, it contains the nodes in the overlapped
surface of Lk and Lk−1, i.e., the overlapped area indicated by
the overlapped blue dotted line and red dotted line shown in
Fig. 4(b). Therefore, such a Lk is no longer a simple closed
surface. In additional to the surface depicted in blue color, it
also contains a smaller hole, whose surface consists of two
parts: a small piece (in black and enclosed by a yellow circle)
which emerges during the layer construction process, and the
surface around the egg-shaped inner hole (in red) which is
caused by the blindly patching from Lk−1 to Lk. Such egg-
shaped surface is included because it is not a covered node set
by Lk.

Clearly, the surface introduced by the hole should be re-
moved from Lk. Observe that the formation of the hole is

Fig. 4. A pathological layer (blue boundary) that contains an inner hole (in
egg shape). The black dot represents the center node. (a) 3-D view; (b) cross
sectional view.

triggered by the emergence of the black piece, which we call
a closing set. Thus, we need to determine the time when this
closing set appears, and find a way to eliminate the hole surface.
We do this by augmenting the layer construction process with
an extra step. First we introduce two additional concepts.

Definition 5. (Fragment Boundary Set (FBS)): The Frag-
ment Boundary Set (FBS) of a fragment F i

k, is a set of con-
nected nodes among F i

k, each of which is a neighbor of some
node in CBi

k−1.
In Fig. 4(a), for example, the yellow circles represent the

fragment boundary sets of F 0
k .

Definition 6. (Closing Set): A Closing Set is a fragment
boundary set whose two farthest nodes are no more than l hops
away, where l is the landmark spacing parameter.

The closing set is defined with the parameter l because when
a component in the network is smaller than l hops in diameter,
it is treated as if it were a single node in the landmark-level
network. From the viewpoint of the landmark based triangula-
tion routine, this represents a point in time when a new closed
surface emerges.

An FBS is easy to detect: every node in a fragment F i
k

checks whether it is linked to a node in CBi
k−1. Those with

links to CBi
k−1 elect their leaders, called FBS leaders, using

a distributed leader election algorithm (e.g., the one used by
nodes in fragments to elect leaders). Each FBS leader then
checks whether the FBS is a closing set by scoped flooding.
If an FBS is a closing set, then its leader initiates a flooding
within Lk−1, with the restriction that the flooded message is
only forwarded to uncovered nodes in Lk−1. The restriction
in effect forces the message to propagate over the egg-shaped
surface in Fig. 4(a). We call the set of nodes on such a surface a
hole set. The nodes in the hole set receiving the flooded message
then simply drop themselves from Lk. Thus the egg-shaped
surface is removed from Lk.

D. Network Boundaries as a Byproduct

An interesting byproduct of the layer composition process
of OnionMap is a set of network boundaries, including the
one for the outer network boundary and those for the inner
holes. Clearly, the outmost layer constitutes a connected and
closed surface for the network’s outer boundary. This surface is
also tight due to the incremental nature of layer construction:

CAI et al.: ONIONMAP 61

the outmost layer first includes all the nodes with the largest
hop count to the center node; then it finds nodes to ensure
connectedness and closedness from the second outmost layer,
which in turns finds nodes from more inner layers, in a recursive
way. For each inner hole of the network topology, the closing
set and its associated hole set constitute a closed and connected
surface (Fig. 4(a)).

IV. LAYER EMBEDDING

This section describes the main steps in layer embedding, by
which each node obtains a set of virtual coordinates.

A. Triangulation

Once the layers are constructed, we extract a triangular mesh
structure for each layer. This can be done by means of triangu-
lation. Without physical location information, we have to use
hop-count distance metric to get a coarse-grained triangulation.
This can be achieved by landmark Voronoi diagram. Each land-
mark performs a local flooding and measures the hop-distance
to the other nodes. Landmark based Voronoi graph is a standard
technique that has been used extensively in sensor networks [5],
[17]. We first select a maximal l-hop (e.g., l = 4) independent
set, whose nodes are used as landmarks in our algorithm. Thus
any two landmarks in layer 1 are at least l hops apart and any
non-landmark node is within l hops of some landmark.

In layer 2, the landmarks are selected in a slightly different
manner. If a layer 2 node happens to be a landmark or a neigh-
bor of some landmark in layer 1, then it is given a higher priority
of being selected as a landmark in layer 2. From layer 3 on-
wards, we do landmark selection in the same way as in layer 2.
As a result, some landmarks in the kth layer are selected from
the neighbors of landmarks in the (k − 1)th layer. It should
be noted that a node may belong to multiple layers on the
topological boundaries. This kind of nodes may be selected as
landmarks in multiple layers.

Next, for each layer, we obtain a closed triangular mesh
with the chosen landmarks using a method similar to [6]. More
specifically, in a given layer, a set of disjoint virtual edges that
connect the landmarks in the same layer are extracted first.
Then the triangles are generated from a distributed triangulation
process, which guarantees that every virtual edge is associated
with only two triangles. For example, Fig. 5(a) shows a closed
triangular mesh for the outmost surface of a cube.

B. Virtual Coordinates Generation

We then map the closed triangular mesh surfaces to unit
spheres, following a three-step implementation similar to the
procedure in [20].

The first step of the mapping is to map the triangular surface
into a plane. By removing a node and its neighboring triangular
faces, a topological sphere is converted into a topological disk.
Then the discrete Ricci flow method [22] is applied to get a
planar disk. In this step, all landmarks in a layer except the
removed node are assigned a set of planar coordinates. The
details of the coordinate assignment by Ricci flow can be found
in [7], [17]. For example, in Fig. 5(a), the triangles in magenta

Fig. 5. Uniformized spherical mapping. (a) A triangulated layer; (b) mapped
unit disk; (c) mapped non-uniform sphere; (d) mapped uniform sphere.

are removed first, then the triangles in cyan are mapped to a unit
disk shown in Fig. 5(b).

The second step is mapping the plane obtained in the first step
to a unit sphere. This can be easily done by a standard stereo-
graphic projection. In this step, all the landmarks including the
removed one are projected on to a unit sphere. In Fig. 5(d),
for example, triangles in the unit disk shown in Fig. 5(b) are
mapped to a sphere shown in Fig. 5(c), and the removed node
is relocated to the center of its neighboring landmarks. Then,
the removed triangles in magenta are attached to the triangles
in cyan, forming a closed spherical surface.

The third step is a Möbius transformation on a unit sphere.
It can be seen that landmark nodes on the spherical surface
shown in Fig. 5(c) are not uniformly distributed. This step is
to make sure that the landmarks are uniformly distributed on
the spherical surface. Otherwise, the stretch factor and load
balancing performance would be poor.

After the three steps, each triangular mesh surface is trans-
formed into a unit sphere where landmarks are uniformly dis-
tributed (shown in Fig. 5(d)). Each layer has a unique spherical
coordinate system, and every landmark belongs to at least one
coordinate system. A landmark that belongs to multiple layers
would store the IDs of all the layers it resides in, as well as the
corresponding coordinates.

C. Layer Alignment

The spherical mapping of the layer results in a set of in-
dependent, concentric unit spheres. So far these spheres are
misaligned, which may result in inefficient cross-layer routing.
To address this problem, we need to (roughly) align them into
one coordinate system.

62 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

Quaternion Rotation Based Layer Alignment: The idea of
layer alignment is based on the fact that the adjacent layers
have either neighboring or shared landmarks. The connections
among these landmarks can serve as a skeleton of the whole
topology. We do alignment as follows. First, we fix L1 as
a reference layer, and then we align the other layers one by
one. Specifically, we randomly select a landmark on Li+1.
The landmark calculates the centroid Ci of its neighboring
landmarks in l hops on Li, and the centroid Ci+1 of its
neighboring landmarks in l hops on Li+1. Then it computes
an offset vector vi from the origin to Ci, and the other offset
vector vi+1 from the origin to Ci+1. The two vectors allow us
to compute the rotation R from vi+1 to vi using the quaternion
rotations [10]. The landmark then floods a message containing
the rotation R to all the other landmarks on Li+1. Each of
these landmarks adjusts its position vector p (points from the
origin to its virtual coordinate) to a new position vector p′

by performing the quaternion product RpR−1. Finally, each
landmark node on Li+1 scales its radius by multiplying its layer
number, for example, i+ 1 in this case. Till now, the landmarks
on Li+1 are aligned with the landmarks on Li.

Such alignment operations are performed from L2 to the
maximum layer one by one for several times. Each time, a
leader is selected on each layer to sum up the errors of the
virtual Euclidean distances among the landmark neighbors in
different layers, where the error equals to the absolute value
of difference between the virtual Euclidean distance and the
hop count (i.e., 1) of each pair of neighboring landmarks in
different layers. Such errors are used as the metric to evaluate
the extent of alignment. In our experiments, three rounds of
layer alignment are sufficient for the errors to be minimized
and stable. Thus, we can align all the layers and obtain a global
coordinate system for the whole network.

State Compression: A landmark lying on the network
boundaries tends to belong to multiple layers. Since it has to
maintain coordinates for each layer, the storage cost may be
high. We found that most of these landmarks share almost the
same radial direction in the aligned Onion-like structure. Such
property can be utilized to compress the state information on
this kind of landmarks. Specifically, if a landmark finds that
it belongs to multiple layers, and that its radial directions in
those layers have difference within a small threshold (e.g., 5◦

in both polar angle and azimuth angle), it compresses its states
by only maintaining one copy of the virtual coordinates and a
range of layers it belongs to. In this way, a landmark can save a
significant amount of storage.

V. ROUTING IN ONIONMAP

In this section, we describe the routing method of OnionMap.

A. State Information Maintained by Nodes

During the layer decomposition step described in Section III,
the center node has built a broadcast tree spanning the whole
network like [19]. Every node can then learn its depth d, and
report its depth back up the tree. (A delay proportional to depth
may be introduced in this process so that the reports from

most nodes are suppressed by those from deeper levels.) The
center determines the maximum depth dM , and makes it known
to all other nodes by a second flooding. This flooding also
commands all the nodes of depth dM , which we call the edge
nodes, to perform an edge flooding in the network. Specifically,
all the edge nodes broadcast a packet containing a unique ID
at approximately the same time. Every non-edge node, upon
receiving the message for the first time, will broadcast the
message. A non-edge node then records its downward parent,
the node from which it receives the flooded message for the
first time. The purpose of the edge flooding is to establish
links for nodes to route toward any level below itself on the
broadcast tree (hence any layer). We call the downward parent
links and the (upward) parent links on the original broadcast
tree inter-layer links, which guarantee reachability between any
two layers.

Recall that in OnionMap there are two types of nodes:
landmark nodes and non-landmark nodes. A non-landmark
node p stores several pieces of state information: 1) depth d
with respect to the center node. 2) the ID of p’s parent on
the center’s broadcast tree; 3) the ID of its downward parent;
4) the IDs of its neighbors; 5) the ID and coordinates of its
home-landmark on p’s innermost layer, and the path to that
home-landmark. The home-landmark of a node is the landmark
in the Voronoi cell that the node belongs to. Within every
Voronoi cell, the home-landmark builds a local shortest path
tree rooted at itself. Each non-landmark node can learn the
parent to its home landmark. Note that a non-landmark node
only keeps track of its home-landmark on its innermost layer,
though it may belong to multiple layers.

A landmark node maintains similar state to that of a non-
landmark node except the home-landmark related part (i.e.,
the 5th part). In addition, a landmark node maintains some
other information: 1) a range of layer IDs it is associated with;
2) its virtual coordinates corresponding to the layers. Due to
state compression, a landmark often maintains only a single
copy of the polar angle for its associated layers. 3) neighboring
landmarks and their virtual coordinates on each layer; 4) the
shortest paths to the neighboring landmarks within l (l = 4 in
our implementation) hops of the network.

B. Routing

OnionMap routing works at two levels: the landmark level
and local level (within a landmark’s Voronoi cell). Each land-
mark establishes a shortest path tree within its Voronoi cell on
a layer, and routing within the cell is easily guided by the tree.
For brevity of exposition, in the following we consider only
the general case where the source and destination nodes are
in different cells. We will also omit the trivial part of routing
between the end nodes and their home-landmark nodes. This
allows us to focus on the routing on the high-level landmark
network, whose nodes we call L-nodes.

Routing on the L-nodes works in two modes: greedy mode
and recovery mode. By default, the packet is forwarded greedily
toward the destination L-node under the guidance of the global
coordinate system. Note that there always exists a greedy
path between any two L-nodes on the same layer. Since the

CAI et al.: ONIONMAP 63

Fig. 6. A typical routing path in an actual network and its OnionMap
structure. (a) Actual routing path; (b) routing path in OnionMap.

global coordinate system is not necessarily uniform due to the
distortion of layer embedding (described in Section IV), greedy
routing may fail. In this case, the routing enter would enter
the recovery mode. The packet follows the inter-layer links
(described in Section V-A) to reach the layer that contains the
destination L-node, and then switches back to greedy mode.

Fig. 6 gives an example of routing path between the source
node s (green node) and destination node t (blue node) in an
actual physical network and its OnionMap structure. The path
marked with grey dots represent the greedy path in the guidance
of OnionMap. The greedy forwarding, however, gets stuck at
the red node p as routing comes across a barrier (the grey area)
as shown in Fig. 6(a), where it cannot find any neighboring node
nearer to t and thereafter switches to the recovery mode. The
packet then moves along the inter-layer links to reach the node q
(path marked with brown dots), which is on the same layer as t.
Afterwards the packet routes on the sphere greedily until it
reaches t (path marked with pink dots). Theorem 2 guarantees
the reachability of the packet under OnionMap.

Theorem 2: OnionMap guarantees packet delivery for any
pair of nodes in a stable network.

Proof: Again we consider only two L-nodes. The reacha-
bility is ensured by two facts: the inter-layer links that guarantee
reachability between any two layers, and the coordinates within
a layer that guarantee the success purely greedy routing. Thus
we have the theorem. �

VI. MESSAGE COST ANALYSIS

We briefly analyze the complexity of message cost of
OnionMap, in comparison with Bubble Routing [20]. Let n be
the network size, lk the nodes of the kth layer. The message cost
is measured by the total number of messages exchanged during
the addressing process.

Theorem 3: OnionMap costs O(n) message transmissions to
complete the addressing process.

Proof: In its first step, OnionMap chooses a center node
among a small constant number of nodes, which perform flood-
ing in the network. Thus, the relevant cost is O(n).

In the layer construction step, the nodes in Lk check their
connectedness and closeness by asynchronous flooding within

Lk, thus the message cost is O(lk−1 + lk). Summing up the
costs of all the layers gives a total cost of O(n).

For each layer k, a discrete Ricci flow is used to compute
virtual coordinates which are then mapped to a unit sphere.
According to [20], this step needs O(lk) message cost. Thus
the network’s total cost of the coordinate generation is O(n).
Finally, during the coordinate alignment process, in order to
adjust Lk with reference to Lk−1, the message cost is O(lk).
Therefore, the total cost is O(n).

Put things together, OnionMap uses O(n) message ex-
changes to establish a global coordinate system for routing. �

In comparison, Bubble Routing needs O(nb) messages for
addressing, where nb denotes the number of boundary nodes.
Notice that Bubble Routing relies on a boundary detection
process which takes at least O(n) message cost [25]. So the
total message cost of Bubble Routing is O(n). In summary,
both schemes are asymptotically optimal in message cost.

VII. SIMULATION

We have implemented OnionMap using C++ for simulation
study. Fig. 7 shows the five 3-D topologies used in our sim-
ulation. The nodes are randomly distributed in a 3-D space
with holes. The number of nodes of the former four topologies
ranges from to 12 000 to 17 000. The last topology m-Hole is
an example of a medium sized network which has 2735 nodes.
Table I shows the size of the out boundary of each topology
and the corresponding size of each hole. The unit is the com-
munication range R. The average node degree is from 15 to
20. The degree setting appears to be higher than typical 2-D
settings, but it is reasonable as a third dimension is introduced
to the network. Further reduction of the average node degree
tends to disconnect the network. We conduct experiments under
two different radio models: Unit Ball Graph (UBG) and Quasi-
UBG [9]. In the UBG model, a link exits between every two
nodes if the Euclidean distance between them is less than R. In
the Quasi-UBG radio model, two parameters, α (0 � α < 1)
and probability p (0 < p < 1), are used to control connectivity
patterns. Specifically, a link exists between two nodes if the
distance between two nodes is less than (1− α)R; a link exists
with probability p if the distance is between (1− α)R and
(1 + α)R; no link exists when the distance is greater than
(1 + α)R.

We compare OnionMap with alternative solutions from dif-
ferent angles. For this purpose we have implemented four other
schemes:

1) OnionMap-, a variant of OnionMap, in which layer align-
ment is disabled. Through comparison with OnionMap-,
we want to study the benefit of layer alignment;

2) Bubble [20], representing the state of the art of 3-D geo-
routing for general network topology (with holes);

3) BVR [4], representing the topology-ignorant approach
to ad hoc routing for general network topology. It uses
distances to a number of landmark nodes as virtual
coordinates for the nodes, based on which routing is
performed;

4) Greedy Random Greedy (GRG) [3], representing the
randomized approach for 3-D geo-routing algorithm (in

64 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

Fig. 7. 3-D network topologies (left column), example layers (second col-
umn), and concentric spherical mappings (third column). The outmost layers
shown in the second row represent the outer boundaries for the networks. For
clarity, the boundaries shown include only the landmarks on their layers, so
are only an abstract version of the real boundaries. (a) Four-hole; (b) example
layers; (c) example spheres; (d) three-hole; (e) example layers; (f) example
spheres; (g) two-hole; (h) example layers; (i) example spheres; (j) U-hole;
(k) example layers; (l) example spheres; (m) m-hole; (n) example layers;
(o) Example spheres.

TABLE I
DIMENSION SIZE OF DIFFERENT TOPOLOGIES

contrast to our deterministic approach). GRG uses ran-
dom walk to recover from local minima.

5) S4 [14], representing the hierarchical routing scheme for
general network topologies. In S4, several landmarks are

TABLE II
PATH STRETCH OF DIFFERENT ALGORITHMS

selected to flood the network and every node records the
hop count distances to these landmarks and then a worst-
case stretch 3 routing scheme is established.

For BVR, we randomly select 1% of the nodes as landmark
nodes, following the default setting in its original paper. For
GRG, we feed the physical coordinates of the nodes to GRG
since it relies on location information. For S4, we randomly
select

√
n nodes as landmark nodes, where n is the size of the

network.

A. Path Stretch

Table II shows the path stretch results of the six schemes.
Path stretch is defined as the ratio of the routing path hop count
to the shortest path hop count. Each time we randomly select
50 000 pairs of source and destination nodes, and report the
aggregate statistics over 10 runs with different random seeds.
As can be seen from Table II, OnionMap achieves mildly worse
stretch compared with S4, with a significant improvement over
the other four schemes. For example, for the Four-Holes case,
OnionMap produces an average stretch of 1.26, achieving a
reduction of 41% compared to the second best scheme Bubble;
for the Three-Holes case, the reduction is 36%. The reason
for Bubble’s disadvantage has been explained in Section II.
Its problem lies in its particular way of dealing with multiple
holes, where the packet may make a detour on its way to the
destination. When the network contains a single hole, e.g.,
in the U-Hole topology, the performance difference becomes
smaller, and even smaller for a medium scale network, m-Hole.

OnionMap- performs worse than OnionMap because it does
not align the layers, thus there is no guidance from a global
coordinate system. In OnionMap-, when the source and des-
tination nodes are in different layers, the packet will be routed
along the inter-layer links until it reaches the destination’s layer.
This “vertical” routing, however, lacks global direction and may
well land on a point very far away from the destination, thus
generating a big detour.

Table II also shows that OnionMap dramatically outperforms
BVR and GRG. BVR generates a large stretch because it
requires scoped flooding to guarantee packet delivery in the
final step when greedy routing fails. The flooding operations

CAI et al.: ONIONMAP 65

Fig. 8. Control message cost in routing setup.

can be very expensive when the failing point is far away from
the destination. The stretch of GRG varies greatly for different
topologies, due to its using blind random walk to escape lo-
cal minima. When the topology become complex (with many
holes), the stretch performance degrades very quickly.

B. Communication and Storage Cost

Routing Setup Cost: Except for GRG which does not need
setup and simply uses random walk in routing, the other
schemes all require a setup procedure to enable routing. Since
the communication cost of detecting boundaries in Bubble is
unclear, we only compare the control message cost of the four
schemes in routing setup as shown in Fig. 8. As has been ex-
plained in Section VI, OnionMap limits the flooding of control
messages mainly on layers while S4 and BVR both require all
the landmarks flood the whole network. Thus OnionMap needs
less control message cost for routing setup. Also, without the
additional cost to align the layers, OnionMap- requires lower
routing setup cost than OnionMap.

Storage Cost of Average Nodes: In Fig. 9, we compare the
per-node storage cost of the six schemes in both bytes and
number of nodes. The storage cost of OnionMap consists of the
data structures that we have described in Section V. We assume
that every ID and double data type takes 4 bytes in the six
schemes. (The specific number of bytes may vary on a different
hardware architecture, but does not affect the following analysis
in general.) From Fig. 9 we can see that OnionMap takes about
150 bytes, which is the least among all schemes. The storage
cost of OnionMap- is slightly larger than OnionMap mainly be-
cause the absence of coordinate alignment (thus state compres-
sion). Bubble requires more storage than OnionMap because
each node in Bubble has to store the coordinates of neighbors
of the same depth in a local shortest path tree, while OnionMap
which only requires landmarks to maintain coordinates.

To put things in perspective, recall that the nodes’ average
degree is 15 to 20, amounting to a 60–80 bytes’ storage cost for
merely the neighbors table. OnionMap’s cost of about 150 bytes
suggests that it takes only two times as much as a neighbor
table’s size to support efficient routing in a large scale network.
Moreover, the cost does not depend on network size, thus
providing high scalability for routing.

Fig. 9. Comparison of per-node storage cost.

For BVR, it incurs a large amount of storage because each
node in BVR has to maintain a distance vector for each of
its neighbors, the size of which is proportional to the number
of the landmarks. S4 also requires high per-node state as each
node has to maintain a large routing table for intra-cluster and
inter-cluster routing. As shown in Fig. 9, the per-node state
of OnionMap can be an order of magnitude lower than that
of S4, while the stretch of OnionMap is less than 18% larger
than that of S4. GRG is a position-based routing algorithm,
in which each node has to maintain the IDs and geographical
coordinates of all of its neighbors. In comparison using bytes
count, the three connectivity-based routing algorithms, namely
OnionMap, OnionMap- and Bubble, do not need the geograph-
ical information, thus saving storage substantially.

Storage Cost of Landmarks: In OnionMap, landmarks are
distinguished nodes that maintain more state than other nodes.
For a landmark that belongs to only one layer, it needs to
maintain only the IDs of its neighbors, the coordinates of itself
and its landmark neighbors on its home layer. These add up
to about 140 bytes. For a multi-layer landmark belonging to
multiple layers, thanks to the storage compression technique
(Section IV-C), it does not have to store information for each as-
sociated layer. Since it only maintains one copy of information
for multiple layers, the storage it requires would not increase
very much. In our simulation, the storage for such landmarks is
about 150 bytes. For a multi-layer landmark that lies near to the
inner boundaries, its layers may not be perfectly aligned, thus
its state cannot be compressed. In our simulations, such a node
takes about 220 bytes. Fortunately, the percentage of such kind
of landmarks is very small (about 0.5% of the total number of
nodes). Therefore, the average per-node state of OnionMap can
stay very low.

C. Load Balance

To obtain the load distribution, we count the number of routes
a node participates in routing by randomly selecting 200 000
routes from each topology shown in Fig. 7. The results are
given in Fig. 10. We omit the result of m-Hole as its scale is
much different from other topologies. We can see that load in

66 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

Fig. 10. Load distribution of OnionMap.

Fig. 11. Network with varying degrees of radio irregularity. (a) α = 0.0;
(b) α = 0.1; (c) α = 0.3; (d) example layers for α = 0.0; (e) example layers
for α = 0.1; (f) example layers for α = 0.3.

OnionMap is well balanced. Specifically, a node is involved
200 000/(12 000 ∼ 17 000) < 20 routes on the average. As
shown in Fig. 10, we can see that more than 40% of nodes
in different topologies are involved less than 10 routes and
around 70% less than 20 routes, a load quite close to the
average one. Actually, as the table in Fig. 10 shows, there are
only minor differences in the normalized standard deviation
(all around 0.7) of the load on sensors on the four different
topologies. It also indicates that the routing paths of OnionMap
are distributed almost uniformly. Moreover, the load balancing
property is not affected by the topologies as the trends of load
under different topologies are nearly the same.

D. Robustness to Connectivity Irregularity

Irregular Radio Model: We use the Quasi-UBG model with
different parameters to verify that OnionMap adapts to ir-
regular radio models. Specifically, we compare the routing
performance of OnionMap with α set to 0.0, 0.1, and 0.3. We
have found that OnionMap attains stable performance across
these variations. Fig. 11 shows that the decomposed layers of
OnionMap become more irregular for a larger α, but OnionMap
can still generate virtual coordinates that support efficient rout-
ing. Table III shows that the performance in stretch, storage, and
load balance varies little when α becomes larger. These results
indicate OnionMap’s stability against radio irregularity.

Non-Uniform Node Distribution: OnionMap is also insensi-
tive to node distribution, thanks to its nature of being location

TABLE III
PERFORMANCE OF ONIONMAP FOR DIFFERENT DEGREES

OF RADIO IRREGULARITY

Fig. 12. A network topology with non-uniform node density. The left and
right halves have average node densities 15.6 and 23.4, respectively. (a) 3-D
topology; (b) a cross section; (c) example layers.

free. This can be seen from Fig. 12, where the network in the
Two-Hole scenario is adjusted so that the left half and right
half have average node densities of 15.6 and 23.4, respectively.
Fig. 12(b) shows a cross section of the original network, in
which the shade of the color of a node is proportional to its de-
gree (number of neighbors). Notice both local and global non-
uniformity of node density. The simulation result (Fig. 12(c))
shows that OnionMap can still obtain well constructed layers.
Moreover, the average stretch generated is 1.28, with an average
per-node state of 146.8 bytes. These results are comparable with
those of the uniform case, suggesting that OnionMap is robust
to non-uniformity node distribution.

VIII. CONCLUSION

In this paper, we have presented an addressing and routing
scheme, OnionMap, for 3-D sensor networks. The key idea is to
decompose a given network into a set of connected and closed
layers, which are then mapped to a set of concentric spheres. On
each sphere, nodes are assigned coordinates that allow purely
greedy routing. The spheres are further aligned to form a global
coordinate system, on which geometric routing is realized. We
have demonstrated OnionMap’s effectiveness through extensive
simulations.

REFERENCES

[1] S. Durocher, D. Kirkpatrick, and L. Narayanan, “On routing with guar-
anteed delivery in three-dimensional ad hoc wireless networks,” in Dis-
tributed Computing and Networking. Berlin, Germany: Springer-Verlag,
2008, pp. 546–557.

[2] Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang, “Glider: Gradient
landmark-based distributed routing for sensor networks,” in Proc. IEEE
INFOCOM, 2005, pp. 339–350.

[3] R. Flury and R. Wattenhofer, “Randomized 3d geographic routing,” in
Proc. IEEE INFOCOM, 2008, pp. 1508–1516.

[4] R. Fonseca et al., “Beacon vector routing: Scalable point-to-point routing
in wireless sensornets,” in Proc. USENIX NSDI, 2005, pp. 329–342.

[5] S. Funke and N. Milosavljevic, “Network sketching or: ‘How much geom-
etry hides in connectivity?—Part II,”’ in Proc. SODA, 2007, pp. 958–967.

[6] H. Jiang, S. Zhang, G. Tan, and C. Wang, “Cabet: Connectivity-based
boundary extraction of large-scale 3d sensor networks,” in Proc. IEEE
INFOCOM, 2011, pp. 784–792.

CAI et al.: ONIONMAP 67

[7] M. Jin, G. Rong, H. Wu, L. Shuai, and X. Guo, “Optimal surface deploy-
ment problem in wireless sensor networks,” in Proc. IEEE INFOCOM,
2012, pp. 2345–2353.

[8] A. M. Kermarrec and G. Tan, “Greedy geographic routing in large-scale
sensor networks: A minimum network decomposition approach,” in Proc.
ACM MobiHoc, 2010, pp. 161–170.

[9] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Ad-hoc networks beyond unit
disk graphs,” in Proc. 2003 Joint Workshop Found. Mobile Comput., 2003,
pp. 69–78.

[10] J. B. Kuipers, Quaternions and Rotation Sequences: A Primer With Appli-
cations to Orbits, Aerospace, and Virtual Reality. Princeton, NJ, USA:
Princeton Univ. Press, 1999.

[11] S. Lam and C. Qian, “Geographic routing in d-dimensional spaces with
guaranteed delivery and low stretch,” in Proc. ACM SIGMETRICS, 2011,
pp. 257–268.

[12] F. Li, J. Luo, C. Zhang, S. Xin, and Y. He, “Unfold: Uniform fast on-line
boundary detection for dynamic 3d wireless sensor networks,” in Proc.
ACM MobiHoc, 2011, pp. 1–14.

[13] C. Liu and J. Wu, “Efficient geometric routing in three dimensional ad hoc
networks,” in Proc. IEEE INFOCOM, 2009, pp. 2751–2755.

[14] Y. Mao, F. Wang, L. Qiu, S. S. Lam, and J. M. Smith, “S4: Small state
and small stretch routing protocol for large wireless sensor networks,” in
Proc. NSDI, 2007, p. 8.

[15] A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J. Guibas, “Land-
mark selection and greedy landmark-descent routing for sensor net-
works,” in Proc. IEEE INFOCOM, 2007, pp. 661–669.

[16] C. Qian and S. S. Lam, “Greedy distance vector routing,” in Proc. IEEE
ICDCS, 2011, pp. 857–868.

[17] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. Gu, “Greedy routing with
guaranteed delivery using ricci flows,” in Proc. ACM/IEEE IPSN, 2009,
pp. 121–132.

[18] G. Tan, M. Bertier, and A. Kermarrec, “Convex partition of sensor net-
works and its use in virtual coordinate geographic routing,” in Proc. IEEE
INFOCOM, 2009, pp. 1746–1754.

[19] Y. Wang, J. Gao, and J. Mitchell, “Boundary recognition in sensor
networks by topological methods,” in Proc. ACM MobiCom, 2006,
pp. 122–133.

[20] S. Xia, M. Jin, H. Wu, and H. Zhou, “Bubble routing: A scalable algorithm
with guaranteed delivery in 3d sensor networks,” in Proc. IEEE SECON,
2012, pp. 245–253.

[21] S. Xia, X. Yin, H. Wu, M. Jin, and X. Gu, “Deterministic greedy routing
with guaranteed delivery in 3d wireless sensor networks,” in Proc. ACM
MobiHoc, 2011, pp. 1–10.

[22] X. Yin, M. Jin, F. Luo, and X. D. Gu, “Discrete curvature flows for
surfaces and 3-manifolds,” in Emerging Trends in Visual Computing.
Berlin, Germany: Springer-Verlag, 2009, pp. 38–74.

[23] X. Yu, X. Yin, W. Han, J. Gao, and X. Gu, “Scalable routing in 3d
high genus sensor networks using graph embedding,” in Proc. IEEE
INFOCOM, 2012, pp. 2681–2685.

[24] W. Zeng, R. Sarkar, F. Luo, X. Gu, and J. Gao, “Resilient routing for sen-
sor networks using hyperbolic embedding of universal covering space,” in
Proc. IEEE INFOCOM, 2010, pp. 1694–1702.

[25] H. Zhou, H. Wu, and M. Jin, “A robust boundary detection algorithm
based on connectivity only for 3d wireless sensor networks,” in Proc.
IEEE INFOCOM, 2012, pp. 1602–1610.

[26] J. Zhou, Y. Chen, B. Leong, and B. Feng, “Practical virtual coordinates for
large wireless sensor networks,” in Proc. IEEE ICNP, 2010, pp. 41–51.

[27] J. Zhou, Y. Chen, B. Leong, and P. Sundaramoorthy, “Practical 3d ge-
ographic routing for wireless sensor networks,” in Proc. ACM SenSys,
2010, pp. 337–350.

Kechao Cai received the B.S. degree from
Huazhong University of Science and Technology,
Wuhan, China, in 2010. He is currently working
toward the M.S. degree in the Department of
Electronics and Information Engineering and at
Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology.
He is also with the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences,
Shenzhen, China. His current research interests
include wireless sensor networks.

Zhimeng Yin received the B.S. degree from
Huazhong University of Science and Technology,
Wuhan, China, in 2011. He is currently working
toward the M.S. degree with the Department of
Electronics and Information Engineering, Wuhan
National Laboratory for Optoelectronics, Huazhong
University of Science and Technology. He is also
with the Shenzhen Institutes of Advanced Tech-
nology, Chinese Academy of Sciences, Shenzhen,
China. His current research interests include wireless
sensor networks.

Hongbo Jiang received the B.S. and M.S. degrees
from Huazhong University of Science and Technol-
ogy, Wuhan, China, and the Ph.D. degree from Case
Western Reserve University, Cleveland, OH, USA.
He is currenty a Professor with the Department of
Electronics and Information Engineering and Wuhan
National Laboratory for Optoelectronics, Huazhong
University of Science and Technology. His research
interests include computer networking, particularly
algorithms and architectures for high-performance
networks and wireless networks.

Guang Tan received the B.S. degree from
Chongqing University of Posts and Telecommunica-
tions, Nan’an, China, in 1999; the M.S. degree from
Huazhong University of Science and Technology,
Wuhan, China, in 2002; and the Ph.D. degree in
computer science from the University of Warwick,
Coventry, U.K., in 2007. From 2007 to 2010, he
was a Postdoctoral Researcher at INRIA-Rennes,
France. He is currently an Associate Researcher
with Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China,

where he works in the area of distributed systems and networks.

Peng Guo received the B.S., M.S., and Ph.D. degrees
from Huazhong University of Science and Tech-
nology, Wuhan, China, in 2000, 2003, and 2008,
respectively. He is currently an Associate Professor
with the Department of Electronics and Information
Engineering and Wuhan National Laboratory for Op-
toelectronics, Huazhong University of Science and
Technology. His research interests include wireless
sensor networks and research and development of
embeded systems.

68 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

Chonggang Wang received the Ph.D. degree in
computer science from Beijing University of Posts
and Telecommunications, Beijing, China. He has
conducted research with NEC Laboratories America,
AT&T Labs Research, University of Arkansas, and
Hong Kong University of Science and Technology.
He is currently with InterDigital Communications,
Melville, NY, USA. His research interests include fu-
ture Internet, machine-to-machine communications,
and cognitive and wireless networks.

Bo Li received the B.Eng. degree in computer
science from Tsinghua University, Beijing, China,
and the Ph.D. degree in electrical and computer
engineering from the University of Massachusetts,
Amherst, MA, USA. From 1993 to 1996, he was
with IBM Networking System Division, Research
Triangle Park, NC, USA. From 1999 to 2005, he
was an Adjunct Researcher at Microsoft Research
Asia-MSRA, where he spent his sabbatical leave
(2003–2004). He is currently a Professor with the
Department of Computer Science and Engineering,

The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
He is also currently a Cheung Kong Chair Professor with Shanghai Jiao Tong
University, Shanghai, China. His recent research interests include large-scale
content distribution in the Internet, peer-to-peer media streaming, the Internet
topology, cloud computing, and green computing and communications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

