IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.24, NO.9, SEPTEMBER 2013

1763

Distance Transform-Based Skeleton Extraction

and Its Applications in Sensor Networks

Wenping Liu, Student Member, IEEE, Hongbo Jiang, Member, IEEE, Xiang Bai, Member, IEEE,

Guang Tan, Member, IEEE, Chonggang Wang, Senior Member, IEEE,
Wenyu Liu, Member, IEEE, and Kechao Cai

Abstract—We study the problem of skeleton extraction for large-scale sensor networks with reliance purely on connectivity
information. Existing efforts in this line highly depend on the boundary detection algorithms, which are used to extract accurate
boundary nodes. One challenge is that in practical this could limit the applicability of the boundary detection algorithms. For instance, in
low node density networks where boundary detection algorithms do not work well, the extracted boundary nodes are often incomplete.
This paper brings a new view to skeleton extraction from a distance transform perspective, bridging the distance transform of the
network and the incomplete boundaries. As such, we propose a distributed and scalable algorithm for skeleton extraction, called DIST,
based on DIStanceTransform, while incurring low communication overhead. The proposed algorithm does not require that the
boundaries are complete or accurate, which makes the proposed algorithm more practical in applications. First, we compute the
distance transform of the network. Specifically, the distance (hop count) of each node to the boundaries of a sensor network is
estimated. The node map consisting of the distance values is considered as the distance transform (the distance map). The distance
map is then used to identify skeleton nodes. Next, skeleton arcs are generated by controlled flooding within the identified skeleton
nodes, thereby connecting these skeleton arcs, to extract a coarse skeleton. Finally, we refine the coarse skeleton by building shortest
path trees followed by a prune phase. The obtained skeleton is robust to boundary noise or shape variations. Besides, we present two
specific applications that benefit from the extracted skeleton: identifying complete boundaries and shape segmentation. First, with the

extracted skeleton using DIST, we propose to identify more boundary nodes to form a meaningful boundary curve. Second, the
utilization of the derived skeleton to segment the network into approximately convex pieces has been shown to be effective.

Index Terms—Sensor networks, skeleton, distance transform, incomplete boundaries

1 INTRODUCTION

HE distribution of the sensors and the overall network

topology are imperatively needed for a variety of
applications, such as data routing, localization, and path
planning, in wireless sensor networks. Often the geographi-
cal locations and the node deployments may vary greatly,
resulting in that the topology of the sensor networks is
affected by such factors as obstacles, deployment random-
ness, and so on. One primitive representing the network
topology is skeleton (also known as medial axis).

The methodology of skeleton is not new: It has been
extensively studied in computer vision [6] and computer

o W. Liu is with the Department of Electronics and Information Engineering,
Wuhan National Laboratory for Optoelectronics, Huazhong University of
Science and Technology, Wuhan 430074, China, and the Hubei University
of Economics, Wuhan 430205, China. E-mail: wenpingliu2009@gmail.com.

e H. Jiang, X. Bai, W. Liu, and K. Cai are with the Department of Electronics
and Information Engineering, Wuhan National Laboratory for Optoelec-
tronics, Huazhong University of Science and Technology, Wuhan, China
430074. E-mail: {hongbojiang2004, xiang.bai, caikechao)@gmail.com,
livwy@mail hust.edu.cn.

o G. Tan is with the Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town,
Shenzhen 518055, China, and the Huazhong University of Science and
Technology. E-mail: guangtan@gmail.com.

o C. Wang is with InterDigital Communications, South Wing, Melville, NY
11747. E-mail: cgwang@ieee.org.

Manuscript received 19 Feb. 2012; revised 7 Oct. 2012; accepted 8 Oct. 2012;
published online 19 Oct. 2012.

Recommended for acceptance by X.-Y. Li.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-02-0118.
Digital Object Identifier no. 10.1109/TPDS.2012.300.

1045-9219/13/$31.00 © 2013 IEEE

graphics [18] community for years where the skeleton is an
important descriptor that contains both the topological and
geometrical properties of the object. In wireless sensor
networks, the skeleton information of the sensor network
can greatly improve the performance of routing, location
service, segmentation, and navigation algorithms. Despite a
wide range of work on this in the past, skeleton extraction
continues to be a challenge, given the connectivity informa-
tion alone for sensor networks. Furthermore, there are harsh
requirements on system performance in terms of message/
time complexity in sensor networks.

Although the designs of the existing connectivity-based
algorithms [4], [5], [13], [14] for skeleton extraction in sensor
networks have demonstrated great ingenuity, and their
effectiveness is shown through extensive simulations, the
main drawback of them is the high dependency on the
boundary detection algorithms, which are used to extract
accurate boundary nodes. As a result, this makes existing
solutions possibly inapplicable in practical. In addition, in
existing works, a skeleton node is such that it has equal hop
counts to at least two closest boundary nodes [4], [5] or
boundary branches [13], [14], [22]. This definition, however,
suffers from boundary noise. That is, a small bump on the
boundary will incur a long skeleton branch; for the case of
incomplete boundaries, the result is even worse.

We tackle the problem of skeleton extraction in wireless
sensor networks where a part of boundary nodes can be
easily identified (e.g., by neighborhood-based algorithm [9])
and exploited to build distance transform, based on

Published by the IEEE Computer Society

1764

TABLE 1
List of Notations
Notation Description
D The network.
oD The boundary of the network.
DT (D) The hop count transform of the network.
dop (p) The hop count transform of node p.
Nr(p) r — hop neighborhood of p, which is the set of nodes
that are at most r hops from node p.
dp(z,y) The Euclidean distance between points x and y.
d(p,q) The hop count distance between nodes p and gq.
S(p,q) The slope of the line by connecting two nodes p and q.
AHCT(q) The average hop count transform of node g.
C(i,5) The skeleton cut formed by skeleton arc ¢ and j.
r(p) The root node of p.
D(p,dap(p)) | The disk centered at point p with radius dyp(p)-

connectivity information only. Our strive is to 1) find the
skeleton nodes and 2) connect them in a proper way. To
address the above-mentioned problems stemmed from the
skeleton definition, this paper brings a new view to skeleton
extraction from a distance transform perspective, bridging
the distance transform of the network and the incomplete
boundaries. Apart from the existing approaches [4], [13]
which extract skeletons directly from a sensor network,
the proposed method computes skeletons based on the
distance transform of a sensor network. The identified
skeleton nodes are lay medially inside the network, that is,
they are good approximations to the centers of the maximal
disks in the continuous case.

In this paper, we propose DIST, a distributed and
scalable algorithm for skeleton extraction based on DIStance
Transform, while incurring low communication overhead.
In computer vision community, distance transform [2] (or
distance map, distance field) describes the shortest distance of
any given point inside an object to the boundaries of the
object. Let D denote an object, and 9D the boundaries of D
(A list of notations can be found in Table 1). We refer to
dp(z,y) as the distance between two points = and y. The
distance transform of D is thus defined as

min dg(z,y), x €D
<

= yedD

DI { 0, z¢D. o
For any point z € D, dpp(r) = minyecsp dg(z,y) is referred to
as the distance of point z to the boundaries of D. Any
distance measure (such as euclidean distance, Manhattan
distance, etc.) can be used to construct the distance
transform here. In DIST, first we assume a part of the
boundary nodes are identified by a neighborhood-based
boundary detection algorithm. We then compute the hop

"y

R RO P

(b)

(@

(©

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.24, NO.9, SEPTEMBER 2013

count distance of each node to the boundaries, resulting in a
hop count transform. Subsequently, we identify skeleton
nodes in a distributed manner: Each node determines
whether it is a skeleton node based on its hop count
distance to the boundaries. Next, the connected components
will be formed by limited flooding within these skeleton
nodes. In each component, the shortest path with the largest
length forms a skeleton arc. Connecting the skeleton arcs,
we obtain a coarse skeleton. Finally, we refine the coarse
skeleton by trimming skeleton branches in the coarse
skeleton. As the example shown in Fig. 1, the result by
our proposed method (see Fig. 1d) is better than that of
MAP [4], [5] (see Fig. 1b) and CASE [13], [14] (see Fig. 1c).
More desirably, even when only 50 percent of the boundary
nodes are identified in a sparse network, our proposed
algorithm still performs well, shown in Fig. 1e.

The second contribution is the demonstration of the
effectiveness of DIST on two specific applications that
benefit from the extracted skeleton: identifying complete
boundaries and shape segmentation. With the extracted
skeleton using DIST, we propose to identify more boundary
nodes in turn, and to connect these boundary nodes to form
a meaningful boundary curve. This “complete boundaries”
can be useful for many sensor applications that require
complete boundaries. Besides, we study how to utilize the
derived skeleton to segment the network into approxi-
mately convex pieces such that algorithms and protocols
that assume a regularly shaped field can be applied in each
convex piece.

The rest of this paper is organized as follows: Section 2
presents the background of distance transform and the
motivation of our work, and Section 3 presents the details of
DIST. We evaluate DIST in Section 4. We introduce two
specific applications of DIST in Section 5. Finally, Section 6
concludes the paper.

2 PRELIMINARIES

For sensor networks with mere connectivity information,
the distance measure is the hop count between nodes. In the
sense of distance measure, we also call the distance
transform of a sensor network as hop count transform (or
hop count map).

In this paper, for node p, we refer to N,.(p) as the set of
nodes (not including p itself) which are at most hops from
p. Subsequently, we will show that a skeleton node can be
identified locally and distributedly by comparing its hop
count transform with that of its neighbors.

P ot b
o S,
Py e

S i
SRR S

(d)

Fig. 1. Skeleton extraction of an eclipse-shaped network with 5,392 nodes. In (b)-(e), the dark-colored nodes (marked in red) are boundary
nodes, and the curves denote the skeletons. The default average degree is 11.9. (a) The original map. (b) CASE [13]. (c) MAP [4]. (d) DIST.
(e) We reduce the radio range such that the average degree is only 6.1 and 50 percent of the boundary nodes are identified where the skeleton

is extracted by DIST.

LIU ET AL.: DISTANCE TRANSFORM-BASED SKELETON EXTRACTION AND ITS APPLICATIONS IN SENSOR NETWORKS

-~ LN -~ Ben
» o » o
- ks p -
o
L iy o
s .
L4 o - b . ¢ <21 S
~ . % ~ . .
.
e 3 SAg { :
. % L4 . ’ -
L >
A 5 & . ¥ ~
3 2 <4 & g ~ f]
LS
-~ o -~ x
i o’

b i TR L

(a) (b)

1765
& g
g \E TS - AN
.
P » ® Pon
. - -
P 3 L e =l 1 >
= -’ - 3
P Yo o ¢
¢ s ‘)
wm s - ~
e .
£ 4 :
o . ¢ - L . >
- & 3
SR Y 4 o - L i
[> - - o »
L4 I - S
i engS ® L ST KL

Fig. 2. Skeleton extraction. (a) Critical skeleton nodes. (b) Skeleton arcs. (c) Skeleton cut pairs are shown as rectangles. (d) Coarse skeleton. The

final refined result is shown in Fig. 1d.

According to the Blum’s definition [1], a point z is a
skeleton point if it is the center of a maximal disk. Note that
the centers of the maximal disks can be easily detected by
comparing the distance transforms only in a neighborhood.
More specifically, if there is a neighbor of z, say, point y,
satisfying that the disk centered at y with radius dyp(y)
contains D(z,dsp(z)), then D(z,dsp(x)) is not a maximal
disk. As such, to check whether the disk D(z,dsp(z)) is a
maximal disk, one only needs to determine whether there is
a neighbor y, such that D(y, dap(y)) contains D(z, dgp(x)).
D(y,dop(y)) contains D(z,dpp(x)) if and only if the
following condition holds [3]: dap(y) > dop(x) + dr(z, y).

Note that the radius of the maximal disk of point z is
actually its distance transform. As a matter of fact, the
skeleton by the maximal disks of D is the set of points
whose distance transforms are locally maximal [21]. For
discrete wireless sensor networks, we can detect skeleton
nodes based on hop count transform in a similar way.
Specifically, node p is a skeleton node if for any node
q € N1(p), the following condition is true:

dop(p) > don(q)- (2)

Due to the integer rounding error of hop count distance
between nodes, there might be only a few skeleton nodes
identified by above way. To deal with this, we make a slight
modification to (2) and present our definition of skeleton
node as follows:

Definition 1. Node p is a skeleton node if the hop count
transform of p is locally maximal, namely, dyp(p) >

max{dap(q) | ¢ € N1(p)}.

It is still to be debated for what is the most appropriate
analog of the continuous skeleton in a discrete wireless
sensor network [22]. Our definition of skeleton node differs
from that given in [4], [13], and we find that the skeleton
nodes from this definition lie medially inside the network.
That is, they are good approximations to the centers of the
maximal disks in the continuous case. On the downside, the
skeleton node identification process based on Definition 1
still suffers from boundary noise due to the nature of
discrete wireless sensor network. To alleviate such pro-
blems, we introduce a parameter (> 1), which determines
how sensitive of the identification process is to the
boundary noise, and accordingly define critical skeleton node
as follows:

Definition 2. If dop(p) > max{dsp(q) | ¢ € N(p)}, we call
node p a critical skeleton node.

Obviously, if node p is a critical skeleton node, it must be
a skeleton node, and the converse is not true. In other
words, Definition 2 provides a sufficient (but not necessary)
condition that allows to identify a skeleton node in a simple
way. In our simulations, » = 3 or 4 is found to be a good
choice for practical purpose. One undesirable characteristic
of the critical skeleton nodes is that they only account for a
few skeleton nodes such that in general they are dis-
connected. Fig. 2a shows an example. Theoretically, a
skeleton is homotopic to the original object and should
have the same simple connectivity as the original object
[17]. To achieve this purpose, we additionally extract
intermediate nodes to connect the critical skeleton nodes
(detailed in Section 3.4).

3 SKELETON EXTRACTION ALGORITHM

3.1 An Overview
As we mentioned in Section 2, to determine whether a node
is a critical skeleton node, the minimum hop count distance
of each node to the boundaries needs to be computed
beforehand. To that end, the first step is to discover the
boundary nodes. As mentioned in Section 1, we use the
neighborhood-based algorithm in [9] to detect the boundary
nodes, even if the obtained boundaries could be incomplete.
Based on these identified boundary nodes, the establishment
of hop count distance transform of each node is trivial.
Subsequently, we identify critical skeleton nodes based on
the obtained hop count distance transform. However, the
critical skeleton nodes are in general disconnected. The
challenge, after the phase of critical skeleton node identifica-
tion, is to connect these critical skeleton nodes in a right way.
We first present the outline of our skeleton extraction
algorithm, followed by the details of each step:

1. Distance map establishment: Each identified boundary
node floods inward the network to build a shortest
path tree (referred to as boundary tree) rooted at
itself. Every sensor node is then associated with a
boundary tree and keeps track of the minimum hop
count distance from the boundaries, as well as the
nearest boundary node (i.e., the root). Each node
without children marks itself as a leaf node.

2. Critical skeleton nodes identification: Each leaf node p
determines whether it is a critical skeleton node by
comparing the hop count distance transforms of p
and its 7-hop neighbors in a distributed manner.

1766

3. Coarse skeleton establishment: The connected critical
skeleton nodes are grouped into a component. All
critical skeleton nodes in the same component are
assigned a common identifier (e.g., the maximum
node ID in the component) via scoped flooding
initiated by every critical skeleton node. Within each
component, we link two farthest skeleton nodes to
obtain a skeleton arc, followed by connecting these
skeleton arcs properly to generate a coarse skeleton.
We emphasize that the connecting process is not
straightforward due to the requirement that a
skeleton must lie medially inside the network.

4. Refinement: Since the coarse skeleton might contain
unwanted skeleton branches with small lengths
(defined by the number of nodes in the skeleton
branch), the coarse skeleton needs to be pruned. In
the final phase, we trim the skeleton branches with
small lengths, and the refined skeleton is obtained.

3.2 Distance Map Establishment

In this section, we mainly focus on how to use boundary
nodes to generate a hop count transform DT(D) through
local flooding. This can be done in a distributed manner as
follows: First, each boundary node p initiates a flooding
message to build a shortest path tree T'(p). The flooded
message contains the ID of p and the number of hops that
the message has traveled. For each interior node ¢, upon
receiving a message from p, if ¢ has not received any
message before, ¢ will join the tree T'(p), record the parent
node that forwarded this message, increase the counter by
one and store the counter, and finally forward this message
to its neighboring nodes; otherwise, ¢ simply discards this
message. By doing so, a shortest path tree T(p) is
constructed; and each node that has the minimum hop
count distance to p is associated with the shortest path tree
T(p). We call such tree T'(p) as a boundary tree. This process
is conducted repeatedly until every node belongs to a
boundary tree.

As emphasized in [22], if the identified boundary nodes
perform their flooding approximately simultaneously, and
the flooded messages travel at approximately the same
speed, each interior node will forward only one message.
This will reduce the total number of delivered messages
substantially and keep the communication overhead very
low (only O(1) per-node message cost).

After this process, each interior node has the knowledge
of its nearest boundary node, and the minimum hop count
(i-e., the counter stored at each node) to the boundaries, and
a hop count map is established.

Lemma 1. For an interior node ¢, its hop count transform is
larger than that of its parent node P(q).

Corollary 2. For an interior node g, if q is not a critical skeleton
node, then P(q) will not be a critical skeleton node.

Theorem 3. If ¢ is a critical skeleton node, then q must be a
leaf node.

Theorem 3 provides a sufficient but not necessary
condition for critical skeleton node identification. In other
words, a critical skeleton node must be a leaf node but not
vice versa. As such, one only needs to identify whether a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.24, NO.9, SEPTEMBER 2013

leaf node is a critical skeleton node. This can narrow down
the scope of critical skeleton identification process, thereby
keeping the total communication overhead low. In next
section, we will show how a leaf node identifies itself in a
distributed fashion.

3.3 Critical Skeleton Nodes Identification

After the establishment of the hop count transform, we next
conduct the so-called skeleton node identification process.
Each leaf node p determines whether itself is a critical
skeleton node, by comparing the hop count distances of p
and its r-hop neighbors N, (p). The skeleton node identification
process works as follows: Each leaf node p of a boundary tree
constructed in Section 3.2 first performs a controlled-
flooding operation within its 7-hop neighbors N,(p). The
flooded message includes the ID of p, its hop count
transform dpp(p), and a counter that indicates how many
hops the message still needs to travel. The counter is
initialized to r. When an intermediate node ¢ receives the
flooded message, g checks whether it is an m-hop neighbor of
p. If not, ¢ does not forward this message; otherwise, ¢
compares dyp(q) and dyp(p). Only when dyp(p) > dop(g) and
the counter is larger than 0 will node ¢ decrease the counter
by one and forward this message to its neighbors. For this
case, we say p is reachable to g. Note that the message will be
suppressed by ¢ if dap(p) < dgp(q); and for this case, we call
p is unreachable to q.

Lemma 4. For two leaf nodes p1,ps; which have a separation of
k(<) hops, if pi is unreachable to po, then dyp(p1) <
dop(pa); otherwise, dop(p1) > 0D(p2).

Theorem 5. A leaf node p is a critical skeleton node if and only if
there is no leaf node s € N.(p) such that node s is reachable to
node p.

One implication of Theorem 5 is that to identify whether
a leaf node p is a critical skeleton node; it only needs to
check whether there is a node within its r-hop neighbor-
hood that is reachable to p. More specifically, in the above-
mentioned skeleton node identification process, if a leaf
node ¢ receives a flooded message from another leaf node, ¢
is not a critical skeleton node; otherwise, ¢ marks itself as a
critical skeleton node. Fig. 2a shows the result of this step.

3.4 Coarse Skeleton Establishment

So far, a set of critical skeleton nodes have already been
identified. Note that two fundamental properties of a
skeleton are: 1) It is medially placed (therefore, maintains
the “medialness”); and 2) it has the simple connectivity as the
original shape [17]. In continuous case, the centers of
maximal disks are medial and connected. With discrete
wireless sensor network, however, the critical skeleton nodes
lie medially but unfortunately, they are generally discon-
nected. In this section, we propose to identify intermediate
nodes (referred to as connecting skeleton nodes), which lie
medially and can be used to link two adjacent skeleton arcs.
Accordingly, a coarse skeleton will be generated.

We first construct a set of connected skeleton compo-
nents of the critical skeleton nodes identified in Section 3.3
and generate a set of skeleton arcs. This can be done as
follows: Each critical skeleton node issues a controlled

LIU ET AL.: DISTANCE TRANSFORM-BASED SKELETON EXTRACTION AND ITS APPLICATIONS IN SENSOR NETWORKS

flooding with a message containing its node ID and the
number of hops that the message has traveled. When
a node p receives a flooded message from a critical
skeleton node, say ¢, there are two cases: 1) If p is a critical
skeleton node and the node ID of ¢ is larger than that of p,
p forwards the flooding message to its neighbors; or, 2)
otherwise, it simply discards this message. By doing so, a
set of connected critical skeleton components are formed
and the shortest path with the largest length for each
component naturally forms a skeleton arc (see Fig. 2b);
and each critical skeleton node is assigned a unique
identifier (e.g., the maximum node ID in the component).
Without ambiguity, we call only the node on skeleton arcs
critical skeleton node.

With these skeleton arcs formed, we now detect
intermediate nodes, based on the slope function of the
distance map, to connect skeleton arcs. In continuous case,
skeleton arcs follow lines of steepest slope of the euclidean
distance map [19], where the slope of the line zy, S(z,y),
is defined as

dop(y) — dop(z)

dp(z.))

S(x,y) =
When a point z is detected as a skeleton point, the
neighbor of z which has a steepest ascending slope is
identified as a new skeleton point [7]. The steepest ascent
approach can guarantee that the skeleton branches locate
medially [11].
In discrete wireless sensor networks, we define the slope,
S(p, g), of the line by connecting two nodes p, ¢ as follows:

dop(q) — dap(p)
dp,q)

If nodes p,q are two neighboring nodes, (4) can be
simplified as

S(p,q) = (4)

S(p,q) = dap(q) — dop(p). (5)

Lemma 6. Let ¢ be a neighbor of a critical skeleton node q. If
S(¢,q) > mazen,()S(s,q), then ¢ locates approximately
medially, and we call ¢' as a connecting skeleton node.

Lemma 7. Let ¢, g2 be two nodes that have the same hop count
distance to a critical skeleton node p, namely, d(p,q) =

d(p, @2). If dop(q1) > dop(ge), then S(p,q1) > S(p, ¢2).

According to Lemmas 6 and 7, we now propose to
identify connecting skeleton nodes. First, we have all
critical skeleton nodes synchronize among themselves
[10] and start to flood the network at approximately the
same time. These skeleton nodes perform a flood with the
messages of the form (ID;, dsp(ID;)) where ID; is the ID of
the ith transmitting node and dypp(ID;) is its hop count
transform. When a node ¢ receives a flooded message,
which is issued by a critical skeleton node, say p, and
forwarded by ¢, if ¢ has not received a message before, g
will join the tree rooted at p, keep record of the parent node
¢ and its hop count transform, append (g¢,dsp(q)) to the
message and forward it to all neighbors, and compute the
average hop count transform of ¢, denoted by AHCT(q),
which is the average of the hop count transforms of
transmitting nodes (including ¢); otherwise, ¢ compares the

1767

hop count transform of ¢ with that of ¢'s parent node P(q).
If dap(q') > dap(P(q)), q changes its parent node as ¢’ and
updates its average hop count transform; otherwise, ¢ only
discards the message. This way, a tree rooted at critical
skeleton node p, denoted by Ti(p), is constructed in a
greedy manner. We call such tree as a skeleton tree. For each
node g, we denote by r(q) its root. Note that two skeleton
trees, whose root nodes belong to different skeleton arcs,
may meet, which shows that the corresponding two
skeleton arcs are adjacent and can be connected. We thus
define cut nodes, C(i,7), as the nodes where two skeleton
trees, whose roots belong to different skeleton arcs ¢ and j,
respectively, meet.

With these skeleton trees constructed, we detect a cut-pair,
based on which we can connect two adjacent skeleton arcs.
The definition of a cut-pair in our paper is given as follows:

Definition 3. A cut-pair (q1,q2) are two nodes such that

1. ¢ and g are neighboring cut nodes;

2. r(q) and r(qz) belong to different skeleton arcs;

3. q and g have a largest AHCT among all cut nodes
associated with these two skeleton arcs.

Further, if (g1,¢2) is a cut-pair, we call ¢; (or ¢2) a cut-
pair node. As such, all skeleton cut-pairs (and cut-pair
nodes) can be detected, see Fig. 2c for skeleton trees and
cut-pairs. The shortest paths from each cut-pair to their
roots will form a connecting path, which connects two
adjacent skeleton arcs and forms one longer skeleton arc.
The following theorem shows that the nodes on a
connecting path are connecting skeleton nodes, that is,
these nodes lie medially.

Theorem 8. Let (p1,p2) € C(4,) be a cut-pair and q a node on
the connecting path from p, to r(p1), and d(q,r(p1)) = k. For
each node s, whose root node is also r(p1) and d(s,r(p1)) = k,
on the path from a cut node in C(i, j) to r(p1), we have

1. AHCT(q) > AHCT(s);

2. S(g;r(p1)) = S(s,7(p1));
3. g is a connecting skeleton node.

Based on Theorem 8, each cut node can claim whether it
is a cut-pair node according to its average hop count
transform, and since each node g on the path from a cut-pair
node to the closest skeleton arc has the largest slope, ¢
claims itself as a connecting skeleton node and informs the
transmitting nodes from ¢ to r(gq) of their identities as
connecting skeleton nodes. These connecting skeleton
nodes, together with critical skeleton nodes, form a
connected component, and thus by connecting themselves,
a coarse skeleton is generated, as shown in Fig. 2d.

We have so far detected two kinds of skeleton nodes:
critical skeleton nodes and connecting skeleton nodes. In
the next section, we call both of them, without ambiguity,
skeleton nodes for short.

3.5 Coarse Skeleton Refinement

Undesirably, the path between two skeleton nodes of the
coarse skeleton may be not the shortest path, and there may
exist unwanted skeleton branches, i.e., with a small number
of skeleton nodes. As such, we need to refine the coarse
skeleton by limited flooding within skeleton nodes on the
coarse skeleton. More specifically, each skeleton node p sets

1768

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24,

NO. 9, SEPTEMBER 2013

g i bt 4
i il
e,
.*.'}." ‘k} i 5
{ % ¢
.ﬁ. ,J:; " 2
‘\..,, vs v ¢

(© (d)

Fig. 3. Skeleton of a bat-shaped network with 1,272 nodes, average degree 13.30. (a) Original network. (b) Skeleton extracted by MAP. (c) Skeleton
extracted by CASE. (d) Skeleton extracted by DIST using only 40 percent of the boundary nodes.

a timer with a random remaining time. When the remaining
time of p reaches 0, node p begins to flood within the coarse
skeleton and builds a shortest path tree. The message
includes the timer and the node ID of p. When a skeleton
node g receives the message from p, it will compare its timer
with the timer of p, and the node with a smaller timer will
dominate. As such, a shortest path tree with skeleton
branches will be formed. Next, we trim this tree based on
the length of skeleton branch (that is, the number of
skeleton nodes on the skeleton branch). Specifically, if the
length of a branch is less than a certain value (we can
simply set this value as r, which is used in Section 3.3 for
critical skeleton node identification), the skeleton branch
will be trimmed. Finally, we obtain the refined skeleton, as
shown in Fig. 1d.

3.6 Discussion

3.6.1 Limitations of DIST

As a skeleton extraction scheme that uses connectivity
information only, DIST relies on the assumption that
network nodes are relatively evenly distributed, for
example, a perturbed grid or uniform random one, as well
as the internode distance has a much smaller variance than
the global network size. This is required for a reasonable
accuracy when the distance is estimated by hop count.
When the network is too small, or the node density is
nonuniform, the accuracy of skeleton extraction will be
affected seriously.

3.6.2 Effect of System Parameters

The parameter r is used to determine how sensitive of the
identification process is to the boundary noise, and
accordingly, we define critical skeleton node based on it.
For instance, an area locally can be consider an exact
nonstraight boundary area for a small value of r. In
contrast, for a large r, this area could be considered to be
boundary noise and the generated skeleton will be derived
not from it to avoid this kind of noise. Otherwise, many
nodes that have two closest boundary nodes that are not
nearby are undesirably identified as skeleton nodes. That is,
r is a predefined system parameter, reflecting the tradeoff
between boundary accuracy and boundary noise from the
user perspective. The choice of a r value then depends on
the applications.

4 PERFORMANCE EVALUATION

To evaluate the effectiveness of DIST, we have conducted
extensive simulations on various scenarios, comparing with
two existing solutions, namely, CASE [13], [14], as well as

MAP [4], [5]. In addition, we study the influence of node
density on DIST and show how robust DIST is to node
density and boundary incompleteness, and the robustness
to communication radio model is also examined. In this
section, we first present our simulation setup, followed by
the simulation results.

4.1 Simulation Setup

In our simulation settings, we first generate a figure with a
given shape, and then we read this figure file to derive a set
of pixels with coordinates (x,y), which accordingly deter-
mines a set of points in the given 2D plane. By adding some
perturbations to these points, we thus generate a network
scenarios with the given shape, where the coordinate of a
point represents the location of a sensor node. Further, we
assume all sensor nodes have the same communication
radio range; and the communication between nodes follows
a unit-disk graph model by default. We use the neighbor-
hood-based algorithm in [9] to identify boundary nodes,
and the parameter for critical skeleton node identification is
r = 3 unless otherwise specified.

For fair comparison, we evaluate CASE and MAP
algorithms based on complete boundaries while evaluating
DIST based on incomplete boundaries by reducing the radio
range, thereby causing sparse networks (low node density).

4.2 Simulation Results

Fig. 3 shows the skeletons extracted by MAP (see Fig. 3b),
CASE (see Fig. 3c), and DIST (see Fig. 3d) on a bat-shaped
network. The skeleton extracted by MAP has many
unwanted long branches, as shown in Fig. 3b. This is
because MAP suffers from boundary noise. Specifically,
many nodes, which have two closest boundary nodes that
are not nearby, are undesirably identified as skeleton nodes.
As for Fig. 3c, two corner points are identified by which the
boundary is decomposed into two boundary branches. We
can see that the skeleton extracted by CASE is quite a few,
and many nodes really located medially are not extracted
because their two closest boundary nodes are on the same
boundary branch. Fig. 3d shows the skeleton extracted by
DIST when only 40 percent of boundary nodes are obtained.
We can clearly see that DIST controlled boundary noise
efficiently, and the extracted skeleton has no unwanted
skeleton branches. Obviously, the skeleton by DIST is better
than (at least comparable to) that of MAP and CASE.

We next examine the performance of algorithms on
airport terminal network. We see similar results as in the
bat-shaped network, as shown in Fig. 4. The skeleton
extracted by MAP has many skeleton branches due to
boundary noise, as shown in Fig. 4b. For CASE, due to the

LIU ET AL.: DISTANCE TRANSFORM-BASED SKELETON EXTRACTION AND ITS APPLICATIONS IN SENSOR NETWORKS

1769

(@ (b)

©)

Fig. 4. Skeleton of terminal-shaped network with 5,012 nodes, average degree 13.59. (a) Original network. (b) Skeleton extracted by MAP.

(c) Skeleton extracted by CASE. (d) Skeleton extracted by DIST using 50 percent of the boundary nodes.

ek i i e T e

o

."-\. ‘_-’..

PP By %, e 2%,

FIT T FRG Py

ete, et Portn ety e ne,, -“':

PP 090,00 0% a0 00308,

0ve pomarnil®® auPes ettt 0’

(b)

TR oea" 00T e T, 00 F98 4000, ™0, Yo T A e seate
i . §
»* O 4 .
1R 3 t
% s 3 ’ b .
.: '3 ...‘“-’h":. t:- .' "
)t s [H
1 % s B .
? feete,0ut Potteumayans, SO s o
3 P .
b B A aek v vl s IR

(© (d)

Fig. 5. Skeleton of network with a concave interior hole, 2,777 nodes, average degree 12.99. (a) Original network. (b) Skeleton extracted by MAP.
(c) Skeleton extracted by CASE. (d) Skeleton extracted by DIST using 80 percent of the boundary nodes.

improperly chosen parameters, some skeleton nodes are not
identified because their two closest boundary nodes are on
the same boundary branch. Consequently, only partial
skeleton is extracted by CASE. One might increase the
threshold value of corner node; however, this could incur
that many boundary nodes are identified as corner nodes.
As a result, a skeleton with many unwanted skeleton
branches will be generated. Fig. 4d shows that DIST is able
to generate a good skeleton graph even in the case of
incomplete boundaries.

We next study the performance of algorithms on one-
hole network. Different from Figs. 3 and 4, the network
shown in Fig. 5 has a concave hole (possibly caused by
obstacles or nodes failures, etc.) inside the network. The
skeleton extracted by MAP in Fig. 5b is good except that the
skeleton has some skeleton branches. In Fig. 5¢c, four corner
points on outer boundary are identified, and the skeleton
nodes are detected accordingly. Since there are only five
boundary branches, we can see that the shortest path with
the largest length make the skeleton a little deviation from
the “medial” location. The skeleton by DIST is comparable
to that of MAP, even with only 80 percent of the boundary
nodes. This is because DIST regards the nodes with locally
maximal hop count transform as skeleton nodes and thus
controls boundary noise efficiently. As such, for networks
with incomplete boundary information, the derived skele-
ton is still desirable.

To further understand the message complexity, we
compute message costs of DIST on examined scenarios, in
terms of the total number of transmitted messages of the
algorithm, as shown in Table 2. We can see that DIST
always causes considerable message cost, and it scales well
to the network size.

Overall, MAP suffers from boundary noise and incurs
many skeleton branches. CASE is sensitive to the parameters
and if these parameters are not set correctly, the skeleton
could be unacceptable. DIST is robust to boundary incom-
pleteness and inaccuracy, and it can work when the
boundary nodes are not fully identified, with a slightly
bend toward the gap formed by two adjacent boundary

nodes that are not nearby. In addition, DIST can work even
when the node density is very low.

5 APPLICATIONS OF SKELETON INFORMATION

Many applications can benefit from the extracted skeleton.
In this section, due to space limit, we only present two
specific applications, namely, identifying complete bound-
aries and shape segmentation.

5.1 Skeleton-Based Routing

To the best of our knowledge, the most appealing
application using skeleton so far is to achieve load
balancing for routing [4]. Roughly speaking, each sensor
node is given a name related to its position with respect to
the skeleton. The routing decision is then derived based on
the names of the source and destination nodes and
guarantees delivery with reasonable and natural routes.
More technical details can be found in [4].

To that end, we first conduct simulations to measure the
routing performance with DIST, based on the network in
Fig. 6. We randomly select 12,000 source and destination
pairs for routing. Fig. 7a shows the results of load
distribution on sensor nodes. We can see that, compared
with other skeleton results, DIST leads to more uniform
loads (i.e., the number of transmitted packages) on nodes.
The reason is that DIST results in a well-connected skeleton
graph well capturing the geometry of the networks,
performing routing in parallel with the reference paths on
the skeleton. In contrast, other algorithms often lead to
undesirable skeleton results, resulting in unbalanced loads

TABLE 2
Message Costs under Different Scenarios
Topology Network size | CASE | MAP DIST
Eclipse(see Fig. 1) 5,392 15,613 | 12,285 | 16,786
Bat(see Fig. 3) 1,272 2,931 3,038 4,868
Terminal(see Fig. 4) 5,012 16,736 | 12,225 | 16,302
One-hole(see Fig. 5) 2,777 9,701 6,153 9,611

1770

Fig. 6. A network with 577 nodes and avg.deg 5.95.

on the different sides of the skeleton. Especially, some
skeleton could be missed, causing that packets could follow
the boundary heavily as mentioned in [4]. Fig. 7b shows the
path stretch of routing, defined as the ratio of the routing
path length to the shortest path hop count between the
nodes, using different skeleton results. DIST outperforms
other algorithms because it achieves smaller stretches. The
reason is that a well-connected skeleton graph is prone to
being represented by straight lines locally. That can lead to
a short routing path since the routing is performed in
parallel with the reference paths on the skeleton.

5.2 Shape Segmentation

A great number of existing protocols achieve much better
performance in regular field than in irregular one [22], and
thus, the shape segmentation has attracted a lot of attention
from wireless sensor network community (e.g., [8], [16],
[20], [22]). We assume that the sensor field is a polygonal
environment, where the field boundaries (inner boundaries
and outer boundary) are all simple polygons. A polygon is
said to be convex if for each vertex, its inward (directed
toward the sensing field) angle is no greater than =. If there
is a vertex whose inward angle is greater than 7, we call
such vertex as a concave (or dull) point. In this section, we
propose to decompose a sensor network with complex
shape into convex pieces based on the obtained skeleton.

Obviously, to identify whether a polygon is convex, one
only needs to detect whether there is a concave point. If
there is no concave point, the polygon (the network) itself is
convex; otherwise, we can draw a line, referred to as a
segment line (e.g., bisectors), from each concave point until
the line hits an edge of the polygon (namely, the boundary
of the network). By doing so, we can decompose the
network into convex pieces, of which each segment line is a
boundary curve. The key problem here is to identify
concave points, which are located on the boundaries of
the sensing field. Generally, for the case of incomplete
boundaries, this is rather difficult since some concave
points may not be identified. In most cases, however, a
concave point may bend the skeleton and form a corner
skeleton node whose closest boundary nodes includes the
concave point. That is, a boundary node identifies itself a
concave node if there is a corner skeleton node correspond-
ing to this boundary node. As such, it is possible for us to
decompose the network into convex pieces based on the
skeleton. Generally, for a skeleton node p, there are four
possible cases:

1. p has no nearest concave boundary nodes. For this
case, we cannot identify a concave node by using the
information of p.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

VOL. 24, NO.9, SEPTEMBER 2013

-~ DIST-FKP'04
---MAP-DLL'09 |’
- MAP-WGM'08|
—MAP-Naive

—Skeleton_DM
-=-Skeleton_DLL'09
----- Skeleton_WGM'06
y £ -+ Skeleton_Naive

0 200 400 600 800 1000 1 11 12 13 14 15 18
Sensor Load Ratio of hops

(a) CDF of routing load (b) CDF of routing path stretch

Fig. 7. Routing performance using different skeleton results.

2. p has only one nearest concave boundary node. In
this case, we can detect a concave node by checking
whether the corresponding skeleton node is a corner
skeleton node.

3. p has two concave nearest boundary nodes. For this
case, we need a special treatment.

4. p has three or more nearest boundary nodes, and at
least one of them is a concave node. In this case, we
call p a joint node that has at least three neighboring
skeleton nodes.

Overall, above-mentioned skeleton nodes of cases 2-4 are
useful in our shape segmentation algorithm, and we call
these nodes feature nodes. With these feature nodes, we can
segment the skeleton into a set of branches, based on which
the network is decomposed into convex pieces.

Now, we present our method for detecting feature nodes.
We first detect corner skeleton nodes and joint skeleton
nodes, and the identification of hidden feature node is
deferred for later. Note that joint skeleton node can be easily
identified by simply counting the number of its neighboring
skeleton nodes after the pruning process of coarse skeleton
in Section 3.4. We mainly address how to identify corner
skeleton nodes. To that end, we first give our definition of
the curvature of a skeleton node, similar with that in [13], in
wireless sensor networks as follows:

Definition 4. For a skeleton node p, let di(p) denote the
maximum hop count distance between two skeleton nodes that
are k-hop neighbors of p. The k-hop curvature of skeleton node
p, ck(p), is defined as

cr(p) = : (6)

Intuitively, if ¢;(p) is close to 1, skeleton node p will be
more likely an ordinary skeleton node, that is, p locates at
the middle of the skeleton, and if ¢, (p) < 1, skeleton node p
may locate at a corner of the skeleton. With this definition,
we thus define a corner skeleton node as follows:

Definition 5. A skeleton node p is a corner skeleton node if
cr(p) < 6, where 6 € (0,1) is a predefined parameter.

As such, for a given 6, each corner skeleton node can
identify itself by computing its k-hop curvature. The corner
skeleton nodes and joint skeleton nodes of Fig. 5 are shown
in Fig. 8a.

With the corner skeleton nodes and joint skeleton
nodes identified, we can segment the skeleton into a set
of branches. See Fig. 8b. Meanwhile, we assign a unique
branch ID (e.g., the maximum node ID in each branch) to
each skeleton node in the branch. After that, each skeleton
node floods in the network, and every node claims its

LIU ET AL.: DISTANCE TRANSFORM-BASED SKELETON EXTRACTION AND ITS APPLICATIONS IN SENSOR NETWORKS

ey
s T

(@) (b)

1771

2 e
* ’O
88 o, T
3 Paatiee S
%
kS
~ Y, s
""’u..”‘o’ M"{:
3 7
’3 ‘s é }:
A
&
3 $
%3
% o (d)

(©

Fig. 8. Skeleton-based segmentation on various networks. The dark nodes in (c) and (d) decompose the networks into nice pieces. (a) Feature
nodes of Fig. 5 are shown as large rectangles. Four skeleton nodes located at the corners of the skeleton are identified as corner skeleton nodes,
and the skeleton node in the top-middle part is a joint skeleton node. (b) Skeleton branches are derived from the identified feature nodes.
(c) Segmentation result of Fig. 5. Message cost 12,686. (d) Segmentation result of Fig. 4. Message cost 18,622.

branch ID as the branch ID of its closest skeleton node.
Doing so, each node q is assigned a branch ID and keeps
record of its closest skeleton node p, and the hop count
distance between ¢ and p. Those nodes with the same
branch ID naturally form a connected component, that is,
the network is segmented into several pieces, as shown in
Figs. 8c and 8d.

It is noted that these pieces may be not convex, and
hidden skeleton nodes have not been identified yet. Next,
we address how to identify hidden skeleton nodes based on
the segmentation result, and segment the network into
convex pieces. A hidden feature node segments a skeleton
branch into two subbranches: One has the same branch ID
as before, and the other subbranch chooses the maximum
node ID of this subbranch as its new branch ID. For each
skeleton node on the subbranch with a new branch ID, it
informs all nodes, whose closest skeleton nodes belong to
this new subbranch, of the new branch ID. After that, the
segmentation of the network is finished, and each piece is
approximately convex.

Theorem 9. After the segmentation, the network has been
decomposed into approximately convex pieces.

Proof. Note that for each concave node ¢ on the boundaries,
there is a feature skeleton node p that has already been
identified. We only prove the second case, and the other
cases can be proved similarly. Since concave node p is
one nearest boundary node of ¢, that is, the ball centered
at ¢ will be tangent to the boundary at p, then the line pg
is vertical to the tangent line at p. According to DIST, the
line pg (together with its extended line) also decomposes
the shape into two parts, of which pg is a boundary. It
can be easily proved that the two angles at p for these
two parts are both less than 7; therefore, these two pieces
are both convex. O

It is noted that the segmentation algorithm may over-
segment the network when there is a complex topology of
the extracted skeleton. Due to the discrete nature, one
possible case here is that there might be many skeleton
nodes identifying themselves as feature skeleton nodes
(including joint skeleton nodes, corner skeleton nodes, and
hidden feature skeleton nodes). To avoid the network being
oversegmented, together with the consideration that a
skeleton should be junction detective (such that different
logical parts can be separated successfully from the
skeleton), a special care is taken here.

6 CONCLUSION

We have proposed a novel distance transform-based
skeleton extraction algorithm in wireless sensor networks,
using only connectivity information. The proposed algo-
rithm does not require that the boundary nodes are
complete or accurate. We have overcome a series of
difficulties in critical skeleton node identification, generat-
ing skeleton arcs and coarse skeleton, and refining the
coarse skeleton. We emphasize that our proposed algorithm
is distributed, robust to boundary noise, applicable for
networks with low node density, and of low complexity.
We compare DIST with two existing solutions, CASE and
MAP. Our experience shows that DIST can achieve a
consistent better approximation of the skeleton, while using
only a small subset of boundary nodes. We finally introduce
two specific applications, namely, identifying complete
boundaries and shape segmentation, which can benefit
from the extracted skeleton.

We plan to study the skeleton extraction problem in
3D sensor networks, which is more challenging. Besides,
we would like to explore the possibility of designing a
more energy-efficient data processing scheme [12] using
skeleton information.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grants 61073147,
61103243, 61173120, 61202460, 71101047, and 61271226; by
the National Natural Science Foundation of China and
Microsoft Research Asia under Grant 60933012; by the
Fundamental Research Funds for the Central Universities
under Grants 2011QN014 and 2012QN078; by the National
Natural Science Foundation of Hubei Province under
Grant 2011CDB044; by the Fok Ying Tung Education
Foundation under Grant 132036; and by the Program for
New Century Excellent Talents in University under Grant
NCET-10-408 (State Education Ministry). An earlier version
of this work appeared in [15]. Hongbo Jiang is the
corresponding author of this paper.

REFERENCES

[1] H. Blum, “Biological Shape and Visual Science (Part I),” Theoretical
Biology, vol. 38, no. 2, pp. 205-287, 1973.

[2] G. Borgefors, “Distance Transformations in Digital Images,”
Computer Vision, Graphics, and Image Processing, vol. 34, pp. 344-
371, 1986.

1772

(3]

(4]

(5]

o]

[

8]

]

(10]

(1]

[12]

(13]

(14]

(15]

[1o]

(17

(18]

[19]

[20]

(21]

(22]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.24, NO.9, SEPTEMBER 2013

J.W. Brandt and V.R. Algazi, “Continuous Skeleton Computation
by Voronoi Diagram,” CVGIP: Image Understanding, vol. 55, no. 3,
pp- 329-338, 1992.

J. Bruck, J. Gao, and A.A. Jiang, “MAP: Medial Axis Based
Geometric Routing in Sensor Networks,” Proc. ACM MobiCom,
2005.

J. Bruck, J. Gao, and A.A. Jiang, “MAP: Medial Axis Based
Geometric Routing in Sensor Networks,” Wireless Networks,
vol. 13, no. 6, pp. 835-853, 2007.

W. Choi, K. Lam, and W. Siu, “Extraction of the Euclidean
Skeleton Based on a Connectivity Criterion,” Pattern Recognition,
vol. 36, no. 3, pp. 721-729, 2003.

M. Coupriea, D. Coeurjollyb, and R. Zrourc, “Discrete Bisector
Function and Euclidean Skeleton in 2D and 3D,” Image and Vision
Computing, vol. 25, no. 10, pp. 1543-1556, 2007.

Q. Fang,]J. Gao, L. Guibas, V. de Silva, and L. Zhang, “Glider:
Gradient Landmark-Based Distributed Routing for Sensor Net-
works,” Proc. IEEE INFOCOM, 2005.

S.P. Fekete, A. Kroller, D. Pfisterer, S. Fischer, and C. Buschmann,
“Neighborhood-Based Topology Recognition in Sensor Net-
works,” Proc. First Int'l Workshop Algorithmic Aspects of Wireless
Sensor Networks, 2004.

S. Ganeriwal, P. Kumar, and M.B. Srivastava, “Timing-Sync
Protocol for Sensor Networks,” Proc. Int’l Conf. Embedded
Networked Sensor Systems, 2003.

Y. Ge and].M. Fitzpatrick, “On the Generation of Skeletons from
Discrete Euclidean Distance Maps,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 18, no. 11, pp. 1055-1066, Nov. 1996.
H. Jiang, S. Jin, and C. Wang, “Prediction or Not? An Energy-
Efficient Framework for Clustering-Based Data Collection in
Wireless Sensor Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 22, no. 6, pp. 1064-1071, June 2011.

H. Jiang, W. Liu, D. Wang, C. Tian, X. Bai, X. Liu, and W. Liu,
“CASE: Connectivity-Based Skeleton Extraction in Wireless
Sensor Networks,” Proc. IEEE INFOCOM, 2009.

H. Jiang, W. Liu, D. Wang, C. Tian, X. Bai, X. Liu, and W. Liu,
“Connectivity-Based Skeleton Extraction in Wireless Sensor Net-
works,” IEEE Trans. Parallel and Distributed Systems, vol. 21, no. 5,
pp- 710-721, May 2010.

W. Liu, H. Jiang, X. Bai, G. Tan, C. Wang, W. Liu, and K. Cai,
“Skeleton Extraction from Incomplete Boundaries in Sensor
Networks Based on Distance Transform,” Proc. IEEE 32nd Int’l
Conf. Distributed Computing Systems, 2012.

W. Liu, D. Wang, H. Jiang, W. Liu, and C. Wang, “Approximate
Convex Decomposition Based Localization in Wireless Sensor
Networks,” Proc. IEEE INFOCOM, 2012.

C. Niblack, P. Gibbons, and D. Capson, “Generating Skeletons and
Centerlines from the Distance Transform,” CVGIP: Graphical
Models and Image Processing, vol. 54, no. 5, pp. 420-437, 1992.

S. Schaefer and C. Yuksel, “Example-Based Skeleton Extraction,”
Proc. Eurographics Symp. Geometry Processing, 2007.

H. Talbot and L. Vincent, “Euclidean Skeletons and Conditional
Bisectors,” Proc. SPIE Visual Comm. and Image Processing (VCIP),
vol. 1818, pp. 862-876, 1992.

G. Tan, M. Bertier, and A.M. Kermarrec, “Convex Partition of
Sensor Networks and Its Use in Virtual Coordinate Geographic
Routing,” Proc. IEEE INFOCOM, 2009.

L. Vincent, “Efficient Computation of Various Types of Skele-
tons,” Proc. SPIE Medical Imaging V, vol. 1445, pp. 297-311, 1991.
X. Zhu, R. Sarkar, and]J. Gao, “Shape Segmentation and
Applications in Sensor Networks,” Proc. IEEE INFOCOM, 2007.

Wenping Liu received the BS and MS degrees
from the Huazhong University of Science and
Technology, China. After that, he joined the
faculty of the Hubei University of Economics. He
is currently working toward the PhD degree in
the Department of Electronics and Information
Engineering, Huazhong University of Science
and Technology. His research interests include
statistical modeling and wireless sensor net-
works. He is a student member of the IEEE.

Hongbo Jiang received the BS and MS
degrees from the Huazhong University of
Science and Technology, China. He received
the PhD degree from Case Western Reserve
University in 2008. After that, he joined the
faculty of the Huazhong University of Science
and Technology as an associate professor. His
research concerns computer networking, espe-
cially algorithms and architectures for high-
performance networks and wireless networks.
He is a member of the IEEE.

Xiang Bai received the BS degree in electronics
and information engineering and the MS degree
in electronics and information engineering from
the Huazhong University of Science and Tech-
nology (HUST), Wuhan, China, in 2003 and in
2005, respectively. From January 2006 to
May 2007, he worked in the Department of
Computer Science and Information, Temple
University. He is currently working toward the
. PhD degree at HUST and has recently joined the
University of California, Los Angeles, as a joint PhD student. His
research interests include computer graphics, computer vision, and
pattern recognition. He is a member of the IEEE.

Guang Tan received the BS degree from the
Chongging University of Posts and Telecommu-
nications, China, in 1999, the MS degree from
the Huazhong University of Science and Tech-
nology, China, in 2002, and the PhD degree in
computer science from the University of War-
wick, United Kingdom, in 2007. He is currently
an associate researcher at the Shenzhen
Institute of Advanced Technology, Chinese
Academy of Sciences, China, where he works
in the area of distributed systems and networks. From 2007 to 2010, he
was a postdoctoral researcher at INRIA-Rennes, France. He is a
member of the IEEE.

Chonggang Wang received the PhD degree in
computer science from the Beijing University of
Posts and Telecommunications. He has con-
ducted research with the NEC Laboratories
America, AT&T Labs Research, University of
Arkansas, and Hong Kong University of Science
and Technology. His research interests include
future Internet, machine-to-machine communi-
cations, and cognitive and wireless networks. He
is a senior member of the IEEE.

Wenyu Liu received the BS degree in computer
science from Tsinghua University, Beijing, China,
in 1986, and the diploma and doctoral degrees,
both in electronics and information engineering,
from the Huazhong University of Science and
Technology (HUST), Wuhan, China, in 1991 and
2001, respectively. He is currently a professor
and an associate chairman in the Department of
Electronics and Information Engineering, HUST.
His current research areas include computer
graphics, multimedia information processing, and computer vision. He is
a member of the IEEE.

Kechao Cai received the BS degree from HUST
in 2010, where he is currently working toward
the MS degree. His current research area is
wireless sensor networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

