
Skeleton Extraction from Incomplete Boundaries in
Sensor Networks based on Distance Transform

Wenping Liu1,4 Hongbo Jiang1 Xiang Bai1 Guang Tan2 Chonggang Wang3 Wenyu Liu1 Kechao Cai1

1Department of Electronics and Information Engineering, Huazhong University of Science and Technology, China
2Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
3InterDigital Communications, PA, 19406, 4Hubei University of Economics, China

1{wenpingliu2009,hongbojiang2004,xiang.bai,caikechao}@gmail.com, liuwy@mail.hust.edu.cn, 2guang.tan@siat.ac.cn, 3cgwang@ieee.org

Abstract—We study the problem of skeleton extraction for
large-scale sensor networks using only connectivity information.
Existing solutions for this problem heavily depend on an al-
gorithm that can accurately detect network boundaries. This
dependence may seriously affect the effectiveness of skeleton
extraction. For example, in low density networks, boundary
detection algorithms normally do not work well, potentially
leading to an incorrect skeleton being generated.

This paper proposes a novel approach, named DIST, to
skeleton extraction from incomplete boundaries using the idea of
distance transform, a concept in the computer graphics area. The
main contribution is a distributed and low-cost algorithm that
produces accurate network skeletons without requiring that the
boundaries be complete or tight. The algorithm first establishes
the network’s distance transform – the hop distance of each node
to the network’s boundaries. Based on this, some critical skeleton
nodes are identified. Next, a set of skeleton arcs are generated
by controlled flooding; connecting these skeleton arcs then gives
us a coarse skeleton. The algorithm finally refines the coarse
skeleton by building shortest path trees, followed by a prune
phase. The obtained skeletons are robust to boundary noise and
shape variations.

Index Terms—Sensor networks, skeleton, distance transform,
incomplete boundaries.

I. INTRODUCTION

The distribution of the sensors and overall network topology
are imperative to a variety of applications such as data routing,
localization, and path planning, etc. Often the geographical
locations and the node deployments may vary greatly, affected
by factors such as obstacles, deployment randomness, and
holes. One primitive representing the network topology is
skeleton, also known as medial axis.

Skeleton extraction has been extensively studied in the
computer vision [9] and computer graphics [28] areas for
many years, where the skeleton is an important descriptor
containing both the topological and geometrical properties of
objects. In wireless sensor networks, the skeleton information
of the sensor network can greatly improve the performance of
routing [5], [6], location service [21], [30], segmentation [33],
[20], [25], and navigation [7] algorithms. Some applications,
such as network diagnosis [26], environment monitoring in
coal mines [23], [24], etc., can also benefit from the skeleton
information. Our approach to skeleton extraction for a sensor
network is to 1) find the skeleton nodes and 2) connect them in

a proper way. Despite extensive work on this subject, skeleton
extraction continues to be a challenge when only connectivity
information is available.

In the computer vision area, skeleton is defined by the
grass-fire model [1] or the locus of the centers of maximal
disk [2]. However, due to the discrete nature of wireless sensor
networks, these definitions do not immediately lead to the
identification of skeleton nodes. In a discrete network, the
distance between nodes has to use hop distance instead of
Euclidean distance. Often this results in noise, e.g., inaccurate
estimation of boundaries and skeletons when the Euclidean
distances between neighbors vary significantly. Besides, even
if the skeleton nodes are known, connecting them to form
a connected skeleton is still nontrivial, since the extracted
skeleton nodes are usually insufficient to form a connected
skeleton.
Prior Work: In the literature a number of techniques have
been proposed to extract skeleton in sensor networks. Al-
though existing connectivity-based skeleton extraction algo-
rithms [5], [6], [18], [19] prove to be very effective, their
main drawback is the heavy dependency on an accurate
boundary detection algorithm, often with complete boundaries.
As a result, this limits the algorithms’ applicability in some
situations.

One class of boundary detection algorithms [11], [32], for
instance, aims to generate a set of continuous 1-manifold
boundary, roughly formulated as closed polygonal chains.
These algorithms’ performance often suffers at a low node
density or when very narrow passages exist in the network, as
shown in Fig. 1(a)(b). Another class of boundary detection
algorithms [12] is based on neighborhood size, using the
observation that on average a boundary node has a fewer
neighboring nodes than interior nodes. Again, in low density
networks, these algorithms often perform poorly, so the gen-
erated boundaries are often incomplete, as shown in Fig. 1(d).
Besides, for comparison, Fig. 1(c) shows the result of a naive
boundary extraction by locally connecting nearby boundary
nodes in Fig. 1(d).

Since existing boundary algorithms designed on complete
boundaries are not suitable to facilitate extracting a well-
connected skeleton graph at a low node density or when
very narrow passages exist in the network, as shown in

2012 32nd IEEE International Conference on Distributed Computing Systems

1063-6927/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCS.2012.11

42

(a) WGM’06 [32] (b) DLL’09 [11] (c) Naive (d) FKP’04 [12]

(e) MAP-WGM’06 (f) MAP-DLL’09 (g) MAP-Naive (h) DIST-FKP’04

Fig. 1. Different ways of boundary recognition and their effects on skeleton extraction. The network has 577 nodes, with average node degree 5.95. Row
1: results of different boundary recognition methods. Row 2: skeleton extraction based on the identified boundaries. The red curves in (a)-(c) represent
the boundaries and the boundary nodes in (d) are marked in red. The black curves in (e)-(h) are skeletons. (a) The boundaries identified by [32]; (b) The
boundaries identified by [11]; (c) The complete boundaries by locally connecting nearby boundary nodes in (d); (d) The incomplete boundaries identified
by [12]; (e) The skeleton extraction using MAP [5] based on the boundary result in (a); (f) The skeleton extraction using MAP [5] based on the boundary
result in (b); (g) The skeleton extraction using MAP [5] based on the boundary result in (c); (h) The skeleton extraction using DIST based on the boundary
result in (d).

(a) (b) (c) (d) (e)

Fig. 2. Skeleton extraction for an eclipse-shaped network with 5,392 nodes. The boundary nodes are shown in red, and the dark curves represent the skeleton.
The average node degree can be adjusted by changing nodal radio range, and is by default 11.9. (a) The original network; (b) The skeleton extracted by
CASE [18]; (c) The skeleton extracted by MAP [5]; (d) The skeleton extracted by our algorithm; (e) The skeleton extracted by DIST when the average node
degree is only 6.1 and only 50% of the boundary nodes are identified.

Fig. 1(e)(f)(g), in this paper, our approach relies only on
incomplete boundaries, which are envisioned as a result of
many trivial methods such as [12]. Research is surprisingly
lacking for the case.

Our Approach: To address the challenge of incomplete
boundaries, we propose a novel approach, named DIST, to
skeleton extraction based on distance transform, a notion in the
computer vision and graphics areas. Different from the existing
approaches [18], [5] which extract skeletons directly from
a sensor network, the proposed method computes skeletons
based on the distance transform of a network. We are aware
of a recent piece of work [33] close to ours which uses
distance field to find skeleton nodes. However, it requires that
all boundary nodes be detected to form boundary cycles. In
addition, it is very sensitive to boundary noise: a small bump
in a boundary may lead to many falsely identified skeleton

nodes.

The contribution of this paper is DIST, a distributed and
low cost algorithm for skeleton extraction based on distance
transform. We assume that only part of the boundary nodes
are known, respecting the fact that full and tight boundaries
are very hard to obtain in some situations (e.g., in low density
networks). We then compute the shortest path distance of each
node to the boundaries, resulting in a distance transform. Ac-
cordingly, we identify skeleton nodes in a distributed manner:
each node determines whether it is a skeleton node based
on its hop distance to the boundaries. Next, the connected
components will be formed by limited flooding within these
skeleton nodes. In each component, the shortest path with the
longest hop distance constructs a skeleton arc. Connecting the
skeleton arcs, we obtain a coarse skeleton. Finally we refine
the coarse skeleton by trimming short skeleton branches in

43

TABLE I
LIST OF NOTATIONS

Notation Description
D The network D.
∂D The boundaries of the network D.

DT (D) The hop count transform of network D.
d∂Dp The hop count transform of node p.
Nr(p) r−hop neighborhood of p, which is the set of nodes which

are at most r hops from node p.
d(p1, p2) The hop count distance between node p1 and p2.
S(p, q) The slope of the line by connecting two nodes p and q.

AHCT(q) The average hop count transform of node q.
C(i, j) The skeleton cut nodes formed by skeleton arc i and j.
r(p) The root node of p.

the coarse skeleton. In Fig. 2, the result by our algorithm (see
Fig. 2(d)) is better than that of MAP [5], [6] (Fig. 2(b)) and
CASE [18], [19] (Fig. 2(c)). In particular, even when only
50% of boundary nodes are identified in a sparse network,
our algorithm still performs well, as shown in Fig. 2(e).

The rest of the paper is organized as follows. Section II
presents the background of distance transform and the moti-
vation of DIST; Section III presents the skeleton extraction
algorithm based on distance transform. We evaluate DIST in
Section V and introduce related work in Section VI. Section IV
discusses the complexity of DIST,and Section VII concludes
the paper.

II. PRELIMINARIES

Before introducing our algorithm, we introduce the basic
definition of distance transform, which is a foundation of our
work. In the computer vision/graphics community, distance
transform [3], also known as distance map or distance field ,

describes the shortest distance of any given point inside an
object to the boundaries of the object. Let D denote an object,
and ∂D denote the boundaries of D (A list of notations can be
found in Table I). We refer to d(p, q) as the distance between
two points p and q. The distance transform of D is defined as

DT (D) =

{
min
q∈∂D

d(p, q), p ∈ D
0, p �∈ D,

(1)

For any point p ∈ D, d∂D(p) = minq∈∂D d(p, q) is referred to
as the distance of point p to the boundaries of D. Any distance
measure (such as Euclidean distance, Manhattan distance, etc.)
can be used to construct the distance transform here. The
distance measure is of crucial importance because it directly
affects the “medialness” of the derived skeleton [14].

For sensor networks with mere connectivity information, the
distance measure is the hop count between two nodes. We also
call distance transform of a network as its hop count transform,
or hop count map. Intuitively, the skeleton points are usually
located at the ridge on the distance transform [14], [22], which
has been widely exploited in computer vision community.

In previous work, a node is called a skeleton node if it has
equal hop counts to at least two closest boundary nodes [5], [6]
or boundary branches [18], [19], [33]. However, this definition
is very sensitive to boundary noise: a small bump on the

boundary will incur a long skeleton branch. For the case of
incomplete boundaries, the result is even worse.

In this paper, for node p, we refer to Nr(p) as the set of
nodes (not including p) which are at most r hops from p.
We will show that a skeleton node can be identified locally by
comparing its hop count transform with those of its neighbors.

According to Blum’s definition [2], a point p is a skeleton
point if the disk centered at point p with radius d(p), denoted
by D(p, d(p)), is a maximal disk. Note that the centers
of the maximal disks can be easily detected by comparing
the distance transforms only in a neighborhood [27]. More
specifically, if there is a neighbor of p, say point q, such that
the disk centered at q with radius d(q) contains D(p, d(p)),
then D(p, d(p)) is not a maximal disk. Thus, to check whether
the disk D(p, d(p)) is a maximal disk, one only needs to check
whether there is a neighbor q, such that D(q, d(q)) contains
D(p, d(p)). D(q, d(q)) contains D(p, d(p)) if and only if the
following condition holds [4]:

d(q) ≥ d(p) + d(p, q) (2)

Note that the radius of the maximal disk of p is actually
its distance transform. In fact, the skeleton defined by the
maximal disks of D is the set of local maxima of the distance
transform [31]. For discrete sensor networks, we can detect
skeleton nodes based on hop count transform in a similar way.
Formally, node p is a skeleton node if for any node q ∈ N1(p),
the following condition is true:

d∂D(p) > d∂D(q) (3)

Due to the integer rounding error of hop count distance be-
tween nodes, there may be only a few skeleton nodes identified
this way. To deal with this, we make a slight modification
to Equation 3 and present our definition of skeleton node as
follows.

Definition 1: Node p is a skeleton node if the hop count
transform of p is a local maximum, namely, d∂D(p) ≥
max{d∂D(q)|q ∈ N1(p)}.

It is debatable as to what is the most appropriate analog of
a continuous skeleton in a discrete sensor network [33]. Our
definition of skeleton differs from that given in [18], [5] and
we find that the skeleton nodes from this definition lie medially
inside the network. That is, they are good approximations to
the centers of the maximal disks in the continuous case. On
the other hand, the skeleton node determining process based
on Definition 1 is still affected by boundary noise. To alleviate
such an undesirable effect, we introduce a parameter r(r > 1),
that determines how sensitive of the identification process is
to the boundary noise, and define critical skeleton node as
follows.

Definition 2: If d∂D(p) ≥ max{d∂D(q)|q ∈ Nr(p)}, we
call node p a critical skeleton node.

Obviously, if node p is a critical skeleton node, it must
be a skeleton node; and the converse is not true. In other
words, Definition 2 provides a sufficient but not necessary
condition to determine a skeleton node in a simple way. In
our simulations, r = 3 or 4 is found to be a good choice

44

for practical purposes. An undesirable characteristic of the
critical skeleton nodes is that they only account for part of
the skeleton so in general they are disconnected. Fig. 3(a)
gives an example. Theoretically, a skeleton is homotopic to
the original shape and should have the same connectivity as
the original shape [27]. To recover the complete skeleton, we
additionally extract intermediate nodes to connect the critical
skeleton nodes (detailed in Section III-D).

III. SKELETON EXTRACTION ALGORITHM

A. An overview

To determine whether a node is a critical skeleton node, the
minimum hop count distance of each node to the boundaries
needs to be computed first. To that end, the first step is
to discover the boundary nodes. For simplicity we adopt
the neighborhood size based algorithm in [12] (though the
obtained boundaries may be incomplete). Based on this,
the establishment of hop distance transform of each node
is straightforward. This helps us to obtain critical skeleton
nodes. However, these nodes are in general disconnected. The
remaining challenge then is to connect them in a right way.

We first present an outline of our skeleton extraction algo-
rithm, followed by the details of each step.

1) Distance Transform Establishment. Each boundary node
floods the network to build a shortest path tree rooted at
itself, referred to as a boundary tree. Every sensor node is
then associated with a single boundary tree whose root has a
minimum hop distance to itself (among all boundary nodes).
Each node without children marks itself as a leaf node.

2) Critical Skeleton Nodes Identification. Each leaf node p
determines whether it is a critical skeleton node by comparing
the hop count distance transforms of p and its r-hop neighbors.

3) Coarse Skeleton Establishment. The connected critical
skeleton nodes are grouped into a component. All nodes in
the same component are assigned a common identifier (e.g.,
the maximum node ID in the component) via scoped-flooding.
Within each component, we connect two farthest skeleton
nodes to obtain a skeleton arc, followed by connecting these
skeleton arcs properly to generate a coarse skeleton. We note
that the connecting process is not straightforward due to
the requirement that a skeleton must lie medially inside the
network.

4) Refinement. Since the coarse skeleton may contain un-
wanted skeleton branches with small lengths, the branches
need to be removed. In the final phase, we prune those short
branches; this gives us a refined skeleton.

B. Distance Transform Establishment

In this subsection, we focus on using boundary nodes to
generate a hop count transform DT (D) through local flooding.
First, each boundary node p initiates a flooding to build a
shortest path tree T (p). The message contains p’s ID and a
counter that records the hop count the message has traveled.
For each interior node q, upon receiving a message from p,
if it has not received any message before, q will join T (p),
record the parent node who forwarded this message, increase

the counter by one and store the counter, and finally forward
this message to its neighboring nodes; otherwise, q simply
discards this message. By doing so, each node that has the
minimum hop count distance to p is associated with T (p).
We call T (p) as a boundary tree. This process is conducted
repeatedly until every node belongs to a boundary tree.

If the boundary nodes perform their flooding approximately
simultaneously, and the flooded message travels at approxi-
mately the same speed, each interior node will forward only
one message. This will substantially reduce the total number
of delivered messages and keep the communication overhead
very low (only O(1) per-node message cost).

After this process, each interior node has the knowledge of
its nearest boundary node, and the minimum hop count dis-
tance (i.e., the counter stored at each node) to the boundaries.
That is, a hop count distance transform is established.

Lemma 1: For an interior node q, the hop count transform
of q is larger than that of its parent node P (q). That is,
d∂D(q) > d∂D(P (q)).

Corollary 1: For an interior node q, if q is not a critical
skeleton node, then q’s parent node will not be a critical
skeleton node.

Proof: Let P (q) be the parent node of q. According to
Lemma 1, we have d∂D(q) > d∂D(P (q)). If node q is not
a critical skeleton node, then there exists at least one node
s ∈ Nr(q) such that d∂D(s) > d∂D(q). Obviously, we have
d∂D(s) > d∂D(P (q)). That is to say, P (q) is not a critical
skeleton node.

Theorem 1: If q is a critical skeleton node, then q must be
a leaf node.

Proof: We prove this by contradiction. Since q is a
critical skeleton node, q has the largest hop count transform
among those of its r-hop neighbors. Namely, d∂D(q) ≥
max{d∂D(s)|s ∈ Nr(q)}. If q is not a leaf node, then q must
have at least one child node. Let node s be a child node of
q. According to Lemma 1, s has a larger hop count transform
as compared to q, that is, the hop count transform of q is
not the largest among those of its r-hop neighbors. That is a
contradiction.
Theorem 1 provides a necessary but not sufficient condition for
critical skeleton node identification. In other words, a critical
skeleton node must be a leaf node but not vice versa. As
such, one only needs to check whether a leaf node is a critical
skeleton node. This can narrow down the scope of checking,
thus keeping the total communication overhead low.

C. Critical Skeleton Nodes Identification

In this phase, each leaf node p determines whether itself is a
critical skeleton node, by comparing the hop distances of p and
its r-hop neighbors Nr(p). The skeleton node identification
process works as follows. Each leaf node p of a boundary
tree first floods its r-hop neighborhood Nr(p). The flooded
message includes p’s ID, its hop count transform d(p), and a
counter that indicates how many hops the message still needs
to travel. The counter is initialized to r. When an intermediate
node q receives the flooded message, q checks whether the

45

(a) (b) (c) (d)

Fig. 3. Skeleton extraction of the eclipse-shaped network in Fig. 2. (a) Critical skeleton nodes; (b) Skeleton arcs; (c) Skeleton trees and cut pairs. Skeleton
nodes are marked in blue and cut pairs are marked in red; (d) Coarse skeleton. The final refined result is shown in Fig. 2 (e).

counter included in the message is larger than 0. If not, q
does not forward this message; otherwise, q compares d∂D(q)
and d∂D(p). Only when d∂D(p) > d∂D(q) and the counter is
larger than 0 will q decrease the counter by one and forward
this message to its neighbors. For this case, we say p is
reachable to q. Note that the message will be suppressed by q
if d∂D(p) ≤ d∂D(q); and for this case, we call p is unreachable
to q.

Lemma 2: For two leaf nodes p1, p2 that have a distance
of k(≤ r) hops, if p1 is unreachable to p2, then d∂D(p1) ≤
d∂D(p2); otherwise, d∂D(p1) > d∂D(p2).

Theorem 2: A leaf node p is a critical skeleton node if and
only if there is no leaf node s ∈ Nr(p) reachable to node p.

Proof: we first prove the necessity. If p is a critical
skeleton node, then d∂D(p) ≥ max{d∂D(q)|q ∈ Nr(p)}.
Assume that there is a node s ∈ Nr(p) reachable to p. This
implies that d∂D(s) > d∂D(p), according to lemma 2. This is
a contradiction.

We next prove the sufficiency. If there is no node s ∈ Nr(p)
reachable to p, that is, for each node s ∈ Nr(p), d∂D(s) ≤
d∂D(p). Therefore, d∂D(p) ≥ max{d∂D(q)|q ∈ Nr(p)}. That
is to say, p is a critical skeleton node.

An implication of Theorem 2 is that to determine whether a
leaf node p is a critical skeleton node, it only needs to check
whether there is a node within its r-hop neighbors that is
reachable to p. More specifically, in the above process, if a
leaf node q receives a flooded message from another leaf node,
q is not a critical skeleton node; otherwise, q marks itself as a
critical skeleton node. Fig. 3(a) shows the result of this step.

Theorem 3: For two leaf nodes p1, p2, if d(p1, p2) = k and
d∂D(p1) = d∂D(p2)+ k, then p2 is unreachable to p1; and p1

is reachable to p2.
Proof: When k = 1, d∂D(p1) = d∂D(p2) + 1, then the

message from p2 will not be forwarded by p1. However, the
message from p1 can be forwarded by p2.

We next prove the case for k = 2, where d∂D(p1) =
d∂D(p2) + 2 and d(p1, p2) = 2. Then there must exists one
node s on a shortest path from p1 to p2 who satisfies that
d(p1, s) = 1, d(s, p2) = 1 and d∂D(p1) > d∂D(s) > d∂D(p2).
When the message from p2 comes to s, s will not forward
the message to its neighbor (including p1), and thus p2 is
unreachable to p1. However, when s receives a message from
p1, it will forward this message to its neighbor p2 since
d∂D(p1) > d∂D(s), that is, p1 is reachable to p2.

We finally prove the case for k > 2. since d(p1, p2) = k,
there is one node s such that d(p1, s) = k − 2, d(s, p2) =
2 and d∂D(p1) = d∂D(s) + k − 2, d∂D(s) = d∂D(p2) + 2.
Therefore, the message from p2 can not be forwarded to s;
and consequently, p2 is unreachable to p1. If k − 2 = 2, p1

is reachable to s and therefore to p2 (See the proof above for
the case k = 2). If k − 2 > 2, we can repeat this procedure
and it is easy to show that p1 is reachable to p2.

This theorem guarantees that our algorithm has low commu-
nication overhead in the phase of skeleton node identification.
This is because for two leaf nodes p1, p2, there is at most one
leaf node, say, p1 is reachable to the other leaf node p2, and
the message from p2 is suppressed.

D. Coarse Skeleton Establishment

So far a set of critical skeleton nodes have been identified.
Note that two fundamental properties of a skeleton are: 1) it is
medially placed (hence maintains the “medialness”); and 2) it
has the simple connectivity as the original shape [27]. That is,
by grouping nearby skeleton nodes, a skeleton graph can be
considered as a simplified topology of the network [6]. In the
continuous domain, the centers of maximal disks are medial
and connected. In a discrete network, however, the critical
skeleton nodes are generally disconnected. In this section,
we identify the intermediate nodes, referred to as connecting
skeleton nodes, which are used to link two adjacent skeleton
arcs. This way a coarse skeleton will be generated.

We first construct a set of connected skeleton components
of the critical skeleton nodes, and generate a set of skeleton
arcs. This can be done as follows. Each critical skeleton node
initiates a controlled flooding with a message containing its
node ID and the hop count the message has traveled. When
a node p receives a flooded message from a critical skeleton
node, say q, there are two cases: 1) if p is a critical skeleton
node and q has a larger ID than p, p forwards the message
to its neighbors; 2) otherwise, it simply discards the message.
By doing so, a set of connected critical skeleton components
are formed and the shortest path with the largest length for
each component naturally forms a skeleton arc (see Fig.3(b));
moreover each critical skeleton node is assigned a unique ID
(e.g.,the maximum node ID in the component).

With these skeleton arcs formed, we next detect intermediate
nodes, based on the slope function of the distance map, to
connect skeleton arcs. In the continuous domain, skeleton

46

arcs follow lines of steepest slope of the Euclidean distance
map [29], where the slope of the line xy, S(x, y), is defined
as

S(x, y) =
d(y)− d(x)

d(x, y)
(4)

where d(x) and d(y) are the Euclidean distance transforms
of points x and y, respectively, and d(x, y) is the Euclidean
distance between points x and y. When a point x is detected
as a skeleton point, the neighbor of x that has a steepest
ascending slope is taken as a new skeleton point [10]. The
steepest ascent approach can guarantee that the skeleton
branches locate medially [14].

In a discrete network, we define the slope, S(p, q), of the
line by connecting two nodes p, q as follows

S(p, q) =
d∂D(q)− d∂D(p)

d(p, q)
(5)

If nodes p, q are two neighboring nodes, Equation (5) can
be simplified as

S(p, q) = d∂D(q)− d∂D(p) (6)

Lemma 3: Let q′ be a neighbor of a critical skeleton node
q. If S(q′, q) ≥ maxs∈N1(q)S(s, q), then q′ locates approxi-
mately medially, and we call q′ a connecting skeleton node.

Lemma 4: Let q1, q2 be two nodes that have the same hop
distance to a critical skeleton node p, namely, d(p, q1) =
d(p, q2). If d∂D(q1) ≥ d∂D(q2), then S(p, q1) ≥ S(p, q2).

Proof: From Equation (5), we have S(p, q1) =
d∂D(q1)−d∂D(p)

d(p,q1)
, S(p, q2) = d∂D(q2)−d∂D(p)

d(p,q2)
. Since d(p, q1) =

d(p, q2) and d∂D(q1) ≥ d∂D(q2), S(p, q1) ≥ S(p, q2) holds.

According to Lemma 3 and Lemma 4, we now propose to
identify connecting skeleton nodes.

First, we have all critical skeleton nodes synchronize among
themselves [13] and start to flood the network at approximately
the same time. These skeleton nodes perform a joint flooding
with the messages in the form (IDi, d∂DIDi) where IDi is
the ID of the ith transmitting node and d∂DIDi is its hop
count transform. When a node q receives a flooded message,
which is initiated by a critical skeleton node p, and forwarded
by q′, if q has not received a message before, q will join
the tree rooted at p, keep record of the parent node q′ and
its hop count transform, append (q, d∂Dq) to the message and
forward it to all neighbors, and compute the average hop count
transform of q, denoted by AHCT (q), which is the average of
the hop count transforms of transmitting nodes (including q);
otherwise, q compares the hop count transform of q′ with that
of q’s parent node P (q). If d∂Dq′ > d∂DP (q), q changes its
parent node to q′, and updates its average hop count transform;
otherwise, q just discards the message. This way, a tree rooted
at critical skeleton node p, denoted by Ts(p), is constructed in
a greedy manner. We call such tree a skeleton tree. For each
node q, we denote by r(q) its root. Note that two skeleton
trees whose root nodes belong to different skeleton arcs may
meet. This means that the corresponding two skeleton arcs
are adjacent and can be connected. We thus define cut nodes,

C(i, j), as the set of nodes such that each of them is rooted
at one skeleton tree (skeleton arcs i) and has a neighbor node
rooted at another skeleton tree (skeleton arcs j).

With these skeleton trees constructed, we detect a cut-pair,
based on which we can connect two adjacent skeleton arcs.
The definition of a cut-pair is as follows.

Definition 3: A cut-pair (q1, q2) are two nodes such that:
1) q1 and q2 are neighboring cut nodes;
2) r(q1) and r(q2) belong to different skeleton arcs;
3) q1 and q2 have a largest AHCT among all cut nodes
associated with these two skeleton arcs.

Further, if (q1, q2) is a cut-pair, we call q1 (or q2) a cut-
pair node. All skeleton cut-pairs (and cut-pair nodes) can be
detected, see Fig 3(c) for skeleton trees and cut-pairs. The
shortest paths from each cut-pair to their roots will form a
connecting path, which connects two adjacent skeleton arcs
and forms one longer skeleton arc. The following theorem
shows that the nodes on a connecting path are connecting
skeleton nodes, that is, these nodes lie medially.

Theorem 4: Let (p1, p2) ∈ C(i, j) be a cut-pair and q a node
on the connecting path from p1 to r(p1), and d(q, r(p1)) =
k. For each node s, whose root node is also r(p1) and
d(s, r(p1)) = k, on the path from a cut node in C(i, j) to
r(p1), we have:

1) AHCT (q) ≥ AHCT (s);
2) S(q, r(p1)) ≥ S(s, r(p1));
3) q is a connecting skeleton node.

Proof: 1) Assume that s is on the path from a cut node
p′ ∈ C(i, j) to r(p1). Obviously, we have AHCT (p1) ≥
AHCT (p′). We prove by mathematical induction that the for
any such node s, AHCT (q) ≥ AHCT (s).

Initial step. We first verify that when k = 1, AHCT (q) ≥
AHCT (s) holds. Since the process of skeleton tree con-
struction is done in a greedy manner, and thus d∂D(q) ≥
d∂D(s), AHCT (q) = d∂D(q), AHCT (s) = d∂D(s). As a
result, we have AHCT (q) ≥ AHCT (s).

Inductive step. We next verify that when k = l(>
1), if AHCT (q) ≥ AHCT (s), then, for k = l + 1,
AHCT (q) ≥ AHCT (s) still holds. Let P (q), P (s) denote
the parent nodes of q and s respectively, then when k = l+1,
we have d(P (q), r(p1)) = d(P (s), r(p1)) = l. Therefore,
AHCT (P (q)) ≥ AHCT (P (s)). Again, since the message
is greedily forwarded to construct a skeleton tree, and P (q)
is on the path from p1 to r(p1), we have d∂D(P (q)) ≥
d∂D(P (s)) and d∂D(q) ≥ d∂D(s). Since AHCT (q) =
AHCT (P (q))×l+d∂D(q)

l+1 , AHCT (s) = AHCT (P (s))×l+d∂D(s)
l+1 ,

we have AHCT (q) ≥ AHCT (s).
2) We next prove that S(q, r(p1)) ≥ S(s, r(p1)). During

the proof process above, we have already seen that d∂D(q) ≥
d∂D(s). According to Lemma 4, we have S(q, r(p1)) ≥
S(s, r(p1)).

3) Let q1, q2, . . . , qk−1 be the k−1 nodes on the path from
q to r(p1), and s1, s2, . . . , sk−1 be the k−1 nodes on the path
from s to r(p1), where d(qi, r(p1)) = i, d(si, r(p1)) = i(i =
1, 2, . . . , k − 1). We have known that d∂D(q1) ≥ d∂D(s1)
and S(q1, r(p1)) ≥ S(s1, r(p1)). Therefore, according to

47

Lemma 3, q1 is a connecting skeleton node since q1 has a
largest slope as compared to other neighbors of r(p1). In
a similar way, we can prove that q2, q3, . . . , qk−1 and q are
connecting skeleton nodes.

Based on Theorem 4, each cut node can decide whether it is
a cut-pair node according to its average hop count transform;
and since each node q on the path from a cut-pair node to
the closest skeleton arc has a largest slope, q considers itself
as a connecting skeleton node, and informs the transmitting
nodes from q to r(q) of their identities as connecting skeleton
nodes. These connecting skeleton nodes, together with critical
skeleton nodes, form a connected component and thus by
connecting themselves, a coarse skeleton is generated, as
shown in Fig. 3 (d).

We have so far detected two kinds of skeleton nodes:
critical skeleton nodes and connecting skeleton nodes. In the
subsequent sections, we call both of them skeleton nodes for
short.

E. Coarse Skeleton Refinement

The path between two skeleton nodes on a coarse skeleton
may not be the shortest, and there may exist unwanted skeleton
branches that contain a few skeleton nodes. Thus we need
to refine the coarse skeleton. Specifically, each skeleton node
p sets a timer with a random remaining time. When the
remaining time reaches 0, p begins to flood within the coarse
skeleton and builds a shortest path tree. The message includes
the timer and p’s node ID. When a skeleton node q receives the
message from p, it will compare its timer with that of p; the
node with a smaller timer will dominate. Then, a shortest path
tree with skeleton branches will be formed. Next we trim this
tree based on the length of skeleton branch (that is, the number
of skeleton nodes on the skeleton branch). If the length of a
branch is less than a certain value (e.g., r), the skeleton branch
will be trimmed. Finally, we obtain the refined skeleton; see
an example in Fig. 2 (d).

IV. DISCUSSIONS

A. Complexity analysis

Theorem 5: Our algorithm has a time complexity of
O(
√

N) and message complexity of O(N), where N is the
number of sensor nodes.

Proof: We first prove the time complexity of our al-
gorithm is O(

√
N). First, to obtain the distance map, each

boundary node floods in the network in a distributed way.
This process has a time complexity of O(1) in the best case
and O(

√
N) in the worst case where some nodes are far away

from the boundaries. Second, each node identifies whether it
is a skeleton node and this time complexity is O(1). Third,
each skeleton node floods within a limited scope to generate
skeleton components and skeleton arcs. The time complexity
is O(Emax), where Emax is the maximum number of skeleton
nodes on skeleton arcs, O(

√
N) at most. Forth, each skeleton

component floods in the network to form a skeleton tree, the
time complexity of which is usually O(1) and O(

√
N) at most;

and connecting two adjacent skeleton arcs to form a coarse

skeleton via skeleton cut-pairs takes O(
√

N) time complexity
at most. Finally, the refinement of coarse skeleton has a time
complexity of at most O(

√
N). In total, the time complexity

is O(
√

N).
We next prove the message complexity of our algorithm

is O(N). First, the construction of distance map has a mes-
sage complexity of O(N). This is because boundary nodes
perform their flooding at approximately the same time and
the flooded message travels at approximately the same speed.
Consequently, each interior node forwards only one message.
Second, the message complexity of critical skeleton node
identification is at most O(N). Let nleaf be the number of
leaf nodes of the boundary trees constructed in the phase of
critical skeleton node identification. Generally, nleaf is far less
than the total number of sensors N . On the other hand, the
message from a leaf node with smaller hop count transform
will be suppressed, resulting in that on average, each r-hop
neighbor of a leaf node will forward the flooding message
in the critical skeleton node identification process only once.
Third, the generation of skeleton components and skeleton arcs
has a message complexity of O(ncsn), where ncsn denotes
the number of critical skeleton nodes which is less than N .
Forth, to obtain the coarse skeleton, each node will receive one
message from a node on skeleton arcs and thus the message
complexity is O(N). Finally, the refinement of coarse skeleton
has a message complexity of O(nsn) where nsn(< N) is the
number of skeleton nodes on the coarse skeleton. Overall, the
message complexity is O(N).

B. The impact of boundary incompleteness on skeleton

The proposed algorithm is robust to boundary noise and
boundary incompleteness. Nevertheless, to achieve a good ap-
proximation of the true skeleton, the distribution of identified
boundary nodes should ideally be even along the boundaries.
A big gap in the boundaries (resulting from the boundary
incompleteness) may incur an unwanted skeleton branch. Be-
sides, the boundary incompleteness also affects the choice of
parameter r. When the number of identified boundary nodes is
large, a small value of r (e.g., r = 3) is enough for producing
a good skeleton. However, for the case of fewer boundary
nodes, we should choose a relatively larger r (e.g.,r = 5) to
avoid the bend toward the gap.

V. PERFORMANCE EVALUATION

To evaluate the effectiveness of DIST, we have conducted
extensive simulations on various scenarios, comparing with
two existing solutions, namely, CASE [18], [19], as well as
MAP [5], [6]. In addition, we study how robust the DIST is
to node density and boundary incompleteness.

A. Simulation Setup

In the simulation, nodes are randomly deployed with a com-
mon communication radio range. We use the neighborhood-
based algorithm in [12] to determine boundary nodes. The
default parameter for critical skeleton node identification is
r = 3.

48

(a) (b)

Fig. 4. Skeleton extracted by MAP on the Eclipsed-shaped network in
Fig. 2. The average degree is 6.3 and only half of the boundary nodes are
detected (marked in red). (a) Skeleton nodes (in blue) equidistant to at least
two boundary nodes. In MAP, those unstable medial nodes, whose closest
boundary nodes within a small distance (here we set the threshold to be 8
hops), are disregarded; (b) The dark curve represents the skeleton by MAP.

(a) (b) (c)

Fig. 5. Boundary extension for a bat-shaped network. The average degree
is 6.2 and only 40% of the boundary nodes are detected. (a) The boundary
nodes (in red); (b) The dark red curves represent the boundaries by naive
extension. (c) Skeleton extracted by CASE.

When evaluating MAP and CASE, we often let them run on
complete boundaries, which are a “friendly” case for them. We
show even under this case, they often produce unsatisfactory
or even wrong results. Fig. 4 and Fig. 5 show the results
in the case of incomplete boundaries. High dependence on
accurate boundary of these two solutions potentially limit their
applicability in practice. As for DIST, we are instead more
interested in the more challenging case where the network
is sparse and the algorithm is only provided with incomplete
boundaries. When the boundaries are complete our algorithm
only performs better. It is noted that a node identifies itself if
its k-hop neighborhood is less than the given threshold value.
One advantage of this algorithm is that it has low message
overhead.

We first compare our algorithm with MAP [5], [6] and
CASE [18], [19] on three network topologies, namely, bat-
shaped network (Fig. 6), Terminal 2 of Paris-Charles De
Gaulle airport (Fig. 7) and one-hole network (Fig. 8).

Besides, we vary the average node degree to examine the
impact of node density on an S-shaped network (Fig. 9). It is
a typical indoor environment without holes. The average node
degree varies from 6.54 to 21.91.

B. Simulation Results

Fig. 6 shows the skeletons extracted by MAP (See
Fig. 6(b)), CASE (See Fig. 6(c)) and our algorithm (See
Fig. 6(d)) on the bat-shaped network. The skeleton extracted
by MAP has many unwanted long branches, as shown in
Fig.6(b). This is because MAP is sensitive to boundary noise.
Specifically, many nodes that have two closest non-adjacent
boundary nodes are undesirably identified as skeleton nodes.
As for Fig. 6(c), two corner points are identified and the
boundary is decomposed into two boundary branches. We can
see that the skeleton extracted by CASE is very incomplete
– many nodes located medially are missed because their two
closest boundary nodes reside on the same boundary branch.
Fig.6 (d) is the skeleton extracted by our algorithm when only
40% of the boundary nodes are known. The skeleton by our
algorithm is better than those of MAP and CASE.

We next examine the case of the airport terminal network.
We see similar results (Fig. 7) as in the bat-shaped network.
The skeleton extracted by MAP has many skeleton branches
due to boundary noise, as shown in Fig. 7(b). For CASE, due
to the improperly chosen parameters, some skeleton nodes are
not identified because their two closest boundary nodes are
on the same boundary branch. Consequently, the skeleton is
only partially extracted by CASE. Fig. 7(d) shows that the our
algorithm is able to generate a good skeleton graph even in
the case of incomplete boundaries.

We next examine the performance of algorithms on a one-
hole network. Different from Fig. 6 and Fig. 7, the network
shown in Fig. 8 has a concave hole inside the network. The
skeleton extracted by MAP in Fig. 8(b) is satisfatory except
that the skeleton has some skeleton branches. In Fig. 8(c),
four corner points on the outer boundary are identified and
the skeleton nodes are detected accordingly. We can see that
the shortest path with the largest length makes the skeleton
deviate a little from the “medial” location. The skeleton by
our algorithm is comparable to that of MAP, even with only
80% of the boundary nodes known.

Fig. 9 shows the impact of various node densities on our
algorithm on the S-shaped network. In Fig. 9 (a), the average
degree is only 6.54. In a network with such low density, often
only a few (e.g., 20%) of the boundary nodes are identified.
One plausible solution to find more boundary nodes is to
increase the threshold value. However, that inevitably makes
many interior nodes falsely identify themselves as boundary
nodes. We can see that there is a big gap in the boundary
near the two concave points of the lower-part of the network.
Consequently, several nodes on the boundary are incorrectly
identified as skeleton nodes; and the final skeleton bends
toward (even tangent with) the boundary. Fortunately, the
obtained skeleton still captures the main geometric features of
the network. In Fig. 9 (b)-(d), the node density is increasing.
As a result, more and more boundary nodes are identified,
leading to more and more accurate skeleton extraction results.

Overall, MAP suffers from boundary noise and generates
many unwanted skeleton branches. CASE is sensitive to the

49

(a) (b) (c) (d)

Fig. 6. Skeleton of a bat-shaped network with 1272 nodes and average degree 13.30. (a) Original network; (b) Skeleton extracted by MAP; (c) Skeleton
extracted by CASE; (d) Skeleton extracted by DIST using only 40% of the boundary nodes.

(a) (b) (c) (d)

Fig. 7. Skeleton of terminal-shaped network with 5012 nodes, average degree 13.59. (a) Original network; (b) Skeleton extracted by MAP; (c) Skeleton
extracted by CASE; (d) Skeleton extracted by DIST using 50% of the boundary nodes.

(a) (b) (c) (d)

Fig. 8. Skeleton of network with a concave hole with 2777 nodes and average degree 12.99. (a) Original network; (b) Skeleton extracted by MAP; (c)
Skeleton extracted by CASE; (d) Skeleton extracted by DIST using 80% of the boundary nodes.

(a) (b) (c) (d)

Fig. 9. Skeleton extraction on an S-shaped network with different node degrees. Boundary nodes are marked in red and the dark curve is the skeleton. (a)
average degree 6.54; (b) average degree 12.38; (c) average degree 17.41; (d) average degree 21.91.

parameters and if these parameters are not set correctly, the
skeleton generated may be unacceptable. Our algorithm is
robust to boundary incompleteness and inaccuracies, and can
work when the boundary nodes are not fully identified. In
addition, our algorithm can work at a very low node density.

VI. RELATED WORK

There are two representative algorithms for skeleton ex-
traction. Gao et al. [5], [6] proposed an algorithm to ex-
tract skeletons, based on which a routing protocol (MAP)
is designed. The experiments show that MAP can improve

the routing performance. Jiang et.al. [18], [19] proposed a
Connectivity-bAsed Skeleton Extraction algorithm (CASE).
CASE first identifies some corner points in the boundaries.
These corner points then decompose the boundaries into sev-
eral boundary branches. If an interior node has equal distance
to two boundary nodes on different boundary branches, this
node will mark itself as a skeleton node. The novelty of CASE
is that it can control boundary noise by introducing a corner
threshold value. A larger threshold value will cause fewer
skeleton nodes to be determined. A common assumption of
MAP and CASE is that all boundary nodes are already known,

50

either by manual input or by a boundary recognition scheme.
One piece of recent work close to ours is the method in [33]
that aims to segment a complex network into a set of nicely
shaped parts but it suffers from boundary noise greatly.

VII. CONCLUSION

We have described DIST, a novel distance transform based
skeleton extraction algorithm for wireless sensor networks,
using only connectivity information. The algorithm does not
require the boundary nodes be complete or accurate, making it
more applicable than previous solutions that rely on accurate
detection of network boundaries. The algorithm is distributed,
robust to boundary noise, and of low complexity. We have
compared our algorithm with two existing solutions, CASE
and MAP. The results show that our algorithm consistently
outperforms those algorithms by generating accurate skeletons
from incomplete boundaries.

In the future, we plan to study the sensor’s topology-related
applications such as segmentation, routing, and localization,
which can benefit from the skeleton extraction proposed in this
paper. Besides, we will study the skeleton extraction problem
in 3D sensor networks, which is more challenging. Finally,
we would like to explore the possibility of designing more
energy-efficient data processing scheme [15], [16], [17], [8]
using skeleton information.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 60803115, Grant
61073147, Grant 61103243, and Grant 61173120; by the
National Natural Science Foundation of China and Microsoft
Research Asia under Grant 60933012; by the Fundamental
Research Funds for the Central Universities under Grant
2011QN014; by the National Natural Science Foundation of
Hubei Province under Grant 2011CDB044; by the CHUTIAN
Scholar Project of Hubei Province; by the Youth Chenguang
Project of Wuhan City under Grant 201050231080; by the
Scientific Research Foundation for the Returned Overseas Chi-
nese Scholars (State Education Ministry); and by the Program
for New Century Excellent Talents in University under Grant
NCET-10-408 (State Education Ministry). The corresponding
author is Hongbo Jiang.

REFERENCES

[1] H. Blum. Transformation for extracting new descriptors of shape, models
for the perception of speech and visual form. MIT Press, pages 363–380,
1967.

[2] H. Blum. Biological shape and visual science (part i). Theoretical
Biology, 38:205–287, 1973.

[3] G. Borgefors. Distance transformations in digital images. In Proc. of
Computer Vision, Graphics, and Image Processing, 1986.

[4] J. W. Brandt and V. R. Algazi. Continuous skeleton computation by
voronoi diagram. CVGIP:Image Understanding, 55(3):329–338, 1992.

[5] J. Bruck, J. Gao, and A. A. Jiang. Map: Medial axis based geometric
routing in sensor networks. In Proc. of ACM MOBICOM, 2005.

[6] J. Bruck, J. Gao, and A. A. Jiang. Map: Medial axis based geometric
routing in sensor networks. Wireless Networks, 13(6):835–853, 2007.

[7] C. Buragohain, D. Agrawal, and S. Suri. Distributed navigation algo-
rithms for sensor networks. In Proc. of IEEE INFOCOM, 2006.

[8] J. Cheng, H. Jiang, J. Liu, W. Liu, and C. Wang. On efficient processing
of continuous historical top-k queries in wireless sensor networks. IEEE
Transactions on Vehicular Technology, 60(5):2363–2367, 2011.

[9] W. P. Choi, K. M. Lam, and W. C. Siu. Extraction of the euclidean skele-
ton based on a connectivity criterion. Pattern Recognition, 36(3):721–
730, 2003.

[10] M. Coupriea, D. Coeurjollyb, and R. Zrourc. Discrete bisector function
and euclidean skeleton in 2d and 3d. Image and Vision Computing,
25(10):1543–1556, 2007.

[11] D. Dong, Y. Liu, and X. Liao. Fine-grained boundary recognition in
wireless ad hoc and sensor networks by topological methods. In Proc.
of ACM MOBIHOC, 2009.

[12] S. P. Fekete, A. Kroller, D. Pfisterer, S. Fischer, and C. Buschmann.
Neighborhood-based topology recognition in sensor networks. In Proc.
of the 1st Int. Workshop on Algorithmic Aspects of Wireless Sensor
Networks, 2004.

[13] S. Ganeriwal, P. Kumar, and M.B.Srivastava. Timing-sync protocol for
sensor networks. SenSys’03:Proc. of the ist international conference on
Embedded networked sensor systems, 2003.

[14] Y. Ge and J. M. Fitzpatrick. On the generation of skeletons from discrete
euclidean distance maps. IEEE Trans. PAMI, 18(11):1055–1066, 1996.

[15] H. Jiang and S. Jin. Scalable and robust aggregation techniques for
extracting statistical information in sensor networks. In Proc. of IEEE
ICDCS, 2006.

[16] H. Jiang, S. Jin, and C. Wang. Parameter-based data aggregation for
statistical information extraction in wireless sensor networks. IEEE
Transactions on Vehicular Technology, 59(8):3992–4001, 2010.

[17] H. Jiang, S. Jin, and C. Wang. Prediction or not? an energy-
efficient framework for clustering-based data collection in wireless sen-
sor networks. IEEE Transactions on Parallel and Distributed Systems,
22(6):1064–1071, 2011.

[18] H. Jiang, W. Liu, D. Wang, C. Tian, X. Bai, X. Liu, and W. Liu. Case:
Connectivity-based skeleton extraction in wireless sensor networks. In
Proc. of IEEE INFOCOM, 2009.

[19] H. Jiang, W. Liu, D. Wang, C. Tian, X. Bai, X. Liu, and W. Liu.
Connectivity-based skeleton extraction in wireless sensor networks.
IEEE Trans. TPDS, 21(5):710–721, 2010.

[20] H. Jiang, T. Yu, C. Tian, G. Tan, and C. Wang. Consel: Connectivity-
based segmentation in large-scale 2d/3d sensor networks. In Proc. of
IEEE INFOCOM, 2012.

[21] S. Lederer, Y. Wang, and J. Gao. Connectivity-based localization of
large scale sensor networks with complex shape. In Proc. of IEEE
INFOCOM, 2008.

[22] F. Leymarie and M. Levine. Simulating the grassfire transform using an
active contour model. IEEE Trans. PAMI, 14(1):56–75, 1992.

[23] M. Li and Y. Liu. Underground structure monitoring with wireless sensor
networks. In Proc. of ACM/IEEE IPSN, 2007.

[24] M. Li and Y. Liu. Underground coal mine monitoring with wireless
sensor networks. ACM Transactions on Sensor Networks (TOSN),
5(2):10–29, 2009.

[25] W. Liu, D. Wang, H. Jiang, W. Liu, and C. Wang. Approximate convex
decomposition based localization in wireless sensor networks. In Proc.
of IEEE INFOCOM, 2012.

[26] Y. Liu, K. Liu, and M. Li. Passive diagnosis for wireless sensor
networks. IEEE/ACM Transactions on Networking (TON), 18(4):1132–
1144, 2010.

[27] C. Niblack, P. Gibbons, and D. Capson. Generating skeletons and
centerlines from the distance transform. CVGIP:Graphical Models and
Image Processing, 54(5):420 – 437, 1992.

[28] S. Schaefer and C. Yuksel. Example-based skeleton extraction. In Proc.
of Eurographics Symposium on Geometry Processing, 2007.

[29] H. Talbot and L. Vincent. Euclidean skeletons and conditional bisectors.
1992.

[30] G. Tan, H. Jiang, S. Zhang, and A.-M. Kermarrec. Connectivity-based
and anchor-free localization in large-scale 2d/3d sensor networks. In
Proc. of ACM MOBIHOC, 2010.

[31] L. Vincent. Efficient computation of various types of skeletons. In Proc.
of SPIE Medical Imaging V, 1991.

[32] Y. Wang, J. Gao, and J. S. B. Mitchell. Boundary recognition in sensor
networks by topological methods. In Proc. of ACM MOBICOM, 2006.

[33] X. Zhu, R. Sarkar, and J. Gao. Shape segmentation and applications in
sensor networks. In Proc. of IEEE INFOCOM, 2007.

51

